Suppr超能文献

具有pH敏感性的益生菌大肠杆菌Nissle 1917驱动的微型机器人用于缺氧靶向肠道肿瘤治疗。

Probiotic Escherichia coli Nissle 1917 propelled micro-robot with pH sensitivity for hypoxia targeted intestinal tumor therapy.

作者信息

Wang Ting, Yin Qiong, Huang Hao Yang, Wang Zhenyu, Song Haixing, Luo Xiaoming

机构信息

School of Public Health, Chengdu Medical College, Chengdu 610500, PR China.

School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China.

出版信息

Colloids Surf B Biointerfaces. 2023 May;225:113277. doi: 10.1016/j.colsurfb.2023.113277. Epub 2023 Mar 23.

Abstract

Poor drug penetration in hypoxia area of solid tumor is a big challenge for intestinal tumor therapy and thus it is crucial to develop an effective strategy to overcome this challenge. Compared with other bacteria used for construction of hypoxia targeted bacteria micro-robot, the Escherichia coli Nissle 1917 (EcN) bacteria are nonpathogenic Gram-negative probiotic and can especially target and identify the signal molecules in the hypoxic region of tumor, and thus, in this study, we choose EcN to construct a bacteria propelled micro-robot for targeting intestinal tumor therapy. Firstly, the MSNs@DOX with average diameter of 200 nm were synthesized and conjugated with EcN bacteria using EDC/NHS chemical crosslinking method to construct a EcN propelled micro-robot. The motility of micro-robot was then evaluated and the motion velocity of EcN-pMSNs@DOX was 3.78 µm/s. Compared with pMSNs@DOX without EcN driven, EcN bacteria propelled micro-robot transported much more pMSNs@DOX into the inner of HCT-116 3D multicellular tumor spheroids. However, the EcN bacteria are non-intracelluar bacteria which lead to the micro-robot can not directly enter into tumor cells. Therefore, we utilized acid-labile linkers of cis-aconitic amido bone to link EcN with MSNs@DOX nanoparticles to achieve the pH sensitive separation of EcN with MSNs@DOX from the micro-robot. At 4 h of incubation, the isolated MSNs@DOX began to enter into the tumor cells through CLSM observation. In vitro live/dead staining results show that EcN-pMSNs@DOX induced much more cell death than pMSNs@DOX at 24 and 48 h of incubation with HCT-116 tumor cells in acid culture media (pH 5.3). For the validation of the therapeutic efficacy of the micro-robot for intestinal tumor, we established the HCT-116 subcutaneous transplantation tumor model. After 28 days of treatment, EcN-pMSNs@DOX dramatically inhibit tumor growth with tumor volume was around 689 mm, induce much more tumor tissues necrosis and apoptosis. Finally, the toxicity of this micro-robot was investigated by pathological analysis the liver and heart tissues. We expect that the pH sensitive EcN propelled micro-robot here we constructed may be a safe and feasible strategy for intestinal tumor therapy.

摘要

实体瘤缺氧区域药物渗透不佳是肠道肿瘤治疗面临的一大挑战,因此开发一种有效的策略来克服这一挑战至关重要。与用于构建缺氧靶向细菌微机器人的其他细菌相比,大肠杆菌Nissle 1917(EcN)是一种非致病性革兰氏阴性益生菌,能够特异性靶向并识别肿瘤缺氧区域中的信号分子,因此,在本研究中,我们选择EcN构建一种用于靶向肠道肿瘤治疗的细菌驱动微机器人。首先,合成平均直径为200 nm的MSNs@DOX,并使用EDC/NHS化学交联方法将其与EcN细菌偶联,构建EcN驱动的微机器人。然后评估微机器人的运动能力,EcN-pMSNs@DOX的运动速度为3.78 µm/s。与无EcN驱动的pMSNs@DOX相比,EcN细菌驱动的微机器人将更多的pMSNs@DOX转运到HCT-116 3D多细胞肿瘤球体内部。然而,EcN细菌是胞外细菌,这导致微机器人无法直接进入肿瘤细胞。因此,我们利用顺乌头酰胺酸骨的酸敏感连接子将EcN与MSNs@DOX纳米颗粒连接,以实现EcN与MSNs@DOX在微机器人中的pH敏感分离。孵育4小时后,通过共聚焦激光扫描显微镜观察发现分离出的MSNs@DOX开始进入肿瘤细胞。体外活/死染色结果表明,在酸性培养基(pH 5.3)中与HCT-116肿瘤细胞孵育24小时和48小时后,EcN-pMSNs@DOX诱导的细胞死亡比pMSNs@DOX多得多。为了验证微机器人对肠道肿瘤的治疗效果,我们建立了HCT-116皮下移植瘤模型。治疗28天后,EcN-pMSNs@DOX显著抑制肿瘤生长,肿瘤体积约为689 mm,诱导更多肿瘤组织坏死和凋亡。最后,通过对肝脏和心脏组织进行病理分析来研究这种微机器人的毒性。我们期望我们在此构建的pH敏感型EcN驱动微机器人可能是一种安全可行的肠道肿瘤治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验