Suppr超能文献

深入了解益生菌Nissle 1917对肿瘤的定殖作用

Towards Understanding Tumour Colonisation by Probiotic Bacterium Nissle 1917.

作者信息

Radford Georgette A, Vrbanac Laura, de Nys Rebekah T, Worthley Daniel L, Wright Josephine A, Hasty Jeff, Woods Susan L

机构信息

Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia.

Precision Cancer Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia.

出版信息

Cancers (Basel). 2024 Aug 26;16(17):2971. doi: 10.3390/cancers16172971.

Abstract

The last decade has seen a rapid increase in studies utilising a genetically modified probiotic, Nissle 1917 (EcN), as a chassis for cancer treatment and detection. This approach relies on the ability of EcN to home to and selectively colonise tumours over normal tissue, a characteristic common to some bacteria that is thought to result from the low-oxygen, nutrient-rich and immune-privileged niche the tumour provides. Pre-clinical studies have used genetically modified EcN to deliver therapeutic payloads that show efficacy in reducing tumour burden as a result of high-tumour and low off-target colonisation. Most recently, the EcN chassis has been expanded into an effective tumour-detection tool. These advances provide strong justification for the movement of genetically modified EcN into clinical oncology trials. What is currently unknown in the field is a deep mechanistic understanding of how EcN distributes to and localises within tumours. This review summarises the existing EcN literature, with the inclusion of research undertaken with other tumour-homing and pathogenic bacteria, to provide insights into possible mechanisms of EcN tumour homing for future validation. Understanding exactly how and why EcN colonises neoplastic tissue will inform the design and testing of the next generation of EcN chassis strains to address biosafety and containment concerns and optimise the detection and treatment of cancer.

摘要

在过去十年中,利用基因工程改造的益生菌——Nissle 1917(大肠杆菌Nissle 1917,EcN)作为癌症治疗和检测载体的研究迅速增加。这种方法依赖于EcN归巢至肿瘤并在肿瘤中选择性定殖而非在正常组织中定殖的能力,这是一些细菌共有的特性,被认为是由肿瘤提供的低氧、营养丰富和免疫豁免的微环境导致的。临床前研究使用基因工程改造的EcN来递送治疗性物质,这些物质由于在肿瘤中高定殖和在非靶标部位低定殖而显示出减轻肿瘤负担的功效。最近,EcN载体已扩展成为一种有效的肿瘤检测工具。这些进展为将基因工程改造的EcN推进到临床肿瘤学试验提供了有力的依据。该领域目前尚不清楚的是对EcN如何在肿瘤中分布和定位的深入机制理解。这篇综述总结了现有的关于EcN的文献,并纳入了对其他肿瘤归巢细菌和病原菌的研究,以深入了解EcN肿瘤归巢的可能机制,供未来验证。准确了解EcN如何以及为何在肿瘤组织中定殖,将为下一代EcN载体菌株的设计和测试提供信息,以解决生物安全和控制问题,并优化癌症的检测和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed23/11394440/418c221a9a82/cancers-16-02971-g001.jpg

相似文献

1
Towards Understanding Tumour Colonisation by Probiotic Bacterium Nissle 1917.
Cancers (Basel). 2024 Aug 26;16(17):2971. doi: 10.3390/cancers16172971.
2
Engineering probiotic Nissle 1917 to block transfer of multiple antibiotic resistance genes by exploiting a type I CRISPR-Cas system.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0081124. doi: 10.1128/aem.00811-24. Epub 2024 Sep 10.
3
Expanding the toolbox of probiotic Escherichia coli Nissle 1917 for synthetic biology.
Biotechnol J. 2024 Jan;19(1):e2300327. doi: 10.1002/biot.202300327. Epub 2023 Oct 13.
4
Prospective and challenges of live bacterial therapeutics from a superhero Nissle 1917.
Crit Rev Microbiol. 2023 Sep;49(5):611-627. doi: 10.1080/1040841X.2022.2109405. Epub 2022 Aug 10.
5
Living hybrid material based on probiotic with photothermal properties inhibits PD-L1 expression after tumouricidal photothermal therapy.
Biomater Transl. 2025 Mar 25;6(1):73-84. doi: 10.12336/biomatertransl.2025.01.006. eCollection 2025.
6
High density fermentation of probiotic E. coli Nissle 1917 towards heparosan production, characterization, and modification.
Appl Microbiol Biotechnol. 2021 Feb;105(3):1051-1062. doi: 10.1007/s00253-020-11079-9. Epub 2021 Jan 22.
7
Engineering Escherichia coli Nissle 1917 as a microbial chassis for therapeutic and industrial applications.
Biotechnol Adv. 2023 Oct;67:108202. doi: 10.1016/j.biotechadv.2023.108202. Epub 2023 Jun 19.
8
High-quality genome-scale metabolic network reconstruction of probiotic bacterium Escherichia coli Nissle 1917.
BMC Bioinformatics. 2022 Dec 30;23(1):566. doi: 10.1186/s12859-022-05108-9.
9
Efficient markerless integration of genes in the chromosome of probiotic E. coli Nissle 1917 by bacterial conjugation.
Microb Biotechnol. 2022 May;15(5):1374-1391. doi: 10.1111/1751-7915.13967. Epub 2021 Nov 9.

本文引用的文献

1
Bacterial therapies at the interface of synthetic biology and nanomedicine.
Nat Rev Bioeng. 2024 Feb;2(2):120-135. doi: 10.1038/s44222-023-00119-4. Epub 2023 Oct 10.
2
Improved detection of colibactin-induced mutations by genotoxic E. coli in organoids and colorectal cancer.
Cancer Cell. 2024 Mar 11;42(3):487-496.e6. doi: 10.1016/j.ccell.2024.02.009.
3
4
Build-a-bug workshop: Using microbial-host interactions and synthetic biology tools to create cancer therapies.
Cell Host Microbe. 2023 Oct 11;31(10):1574-1592. doi: 10.1016/j.chom.2023.09.006.
6
Engineered Escherichia coli for the in situ secretion of therapeutic nanobodies in the gut.
Cell Host Microbe. 2023 Apr 12;31(4):634-649.e8. doi: 10.1016/j.chom.2023.03.007. Epub 2023 Mar 31.
7
Probiotic Escherichia coli Nissle 1917 propelled micro-robot with pH sensitivity for hypoxia targeted intestinal tumor therapy.
Colloids Surf B Biointerfaces. 2023 May;225:113277. doi: 10.1016/j.colsurfb.2023.113277. Epub 2023 Mar 23.
8
Chemokines expressed by engineered bacteria recruit and orchestrate antitumor immunity.
Sci Adv. 2023 Mar 10;9(10):eadc9436. doi: 10.1126/sciadv.adc9436. Epub 2023 Mar 8.
9
Robust performance of a live bacterial therapeutic chassis lacking the colibactin gene cluster.
PLoS One. 2023 Feb 2;18(2):e0280499. doi: 10.1371/journal.pone.0280499. eCollection 2023.
10
Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria.
Nat Biotechnol. 2023 Jul;41(7):919-931. doi: 10.1038/s41587-022-01581-y. Epub 2023 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验