Suppr超能文献

自组装神经支配血管芯片用于伤害感受研究。

Self-assembled innervated vasculature-on-a-chip to study nociception.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, United States of America.

Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States of America.

出版信息

Biofabrication. 2023 Apr 13;15(3). doi: 10.1088/1758-5090/acc904.

Abstract

Nociceptor sensory neurons play a key role in eliciting pain. An active crosstalk between nociceptor neurons and the vascular system at the molecular and cellular level is required to sense and respond to noxious stimuli. Besides nociception, interaction between nociceptor neurons and vasculature also contributes to neurogenesis and angiogenesis.models of innervated vasculature can greatly help delineate these roles while facilitating disease modeling and drug screening. Herein, we report the development of a microfluidic-assisted tissue model of nociception in the presence of microvasculature. The self-assembled innervated microvasculature was engineered using endothelial cells and primary dorsal root ganglion (DRG) neurons. The sensory neurons and the endothelial cells displayed distinct morphologies in presence of each other. The neurons exhibited an elevated response to capsaicin in the presence of vasculature. Concomitantly, increased transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor expression was observed in the DRG neurons in presence of vascularization. Finally, we demonstrated the applicability of this platform for modeling nociception associated with tissue acidosis. While not demonstrated here, this platform could also serve as a tool to study pain resulting from vascular disorders while also paving the way towards the development of innervated microphysiological models.

摘要

伤害感受器感觉神经元在引发疼痛中起关键作用。需要在分子和细胞水平上在伤害感受器神经元和血管系统之间进行积极的串扰,以感知和响应有害刺激。除了伤害感受之外,伤害感受器神经元和脉管系统之间的相互作用还有助于神经发生和血管生成。有神经支配的脉管系统模型可以极大地帮助阐明这些作用,同时促进疾病建模和药物筛选。在此,我们报告了在微脉管系统存在下伤害感受的微流控辅助组织模型的开发。使用内皮细胞和原代背根神经节 (DRG) 神经元来工程化自组装的有神经支配的微血管。在彼此存在的情况下,神经元和内皮细胞表现出不同的形态。在脉管系统存在的情况下,神经元对辣椒素表现出更高的反应。同时,在血管生成的情况下,DRG 神经元中瞬时受体电位阳离子通道亚家族 V 成员 1 (TRPV1) 受体的表达增加。最后,我们证明了该平台在模拟与组织酸中毒相关的伤害感受方面的适用性。虽然这里没有证明,但该平台还可以作为研究血管疾病引起的疼痛的工具,同时为有神经支配的微生理模型的开发铺平道路。

相似文献

1
Self-assembled innervated vasculature-on-a-chip to study nociception.
Biofabrication. 2023 Apr 13;15(3). doi: 10.1088/1758-5090/acc904.
2
CGRPα within the Trpv1-Cre population contributes to visceral nociception.
Am J Physiol Gastrointest Liver Physiol. 2018 Feb 1;314(2):G188-G200. doi: 10.1152/ajpgi.00188.2017. Epub 2017 Sep 28.
4
Mouse colon sensory neurons detect extracellular acidosis via TRPV1.
Am J Physiol Cell Physiol. 2007 May;292(5):C1768-74. doi: 10.1152/ajpcell.00440.2006. Epub 2007 Jan 24.
5
The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons.
Neurosci Lett. 2014 Aug 22;578:211-6. doi: 10.1016/j.neulet.2014.01.021. Epub 2014 Jan 25.
6
7
SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons.
Neuron. 2016 Dec 21;92(6):1279-1293. doi: 10.1016/j.neuron.2016.11.007. Epub 2016 Dec 1.

引用本文的文献

1
Decoding Pain: Next-Generation In Vitro Systems for Mechanistic Insights and Drug Discovery.
FASEB J. 2025 Aug 31;39(16):e70914. doi: 10.1096/fj.202501025RR.
3
Tiny Organs, Big Impact: How Microfluidic Organ-on-Chip Technology Is Revolutionizing Mucosal Tissues and Vasculature.
Bioengineering (Basel). 2024 May 10;11(5):476. doi: 10.3390/bioengineering11050476.
4
UDP-6-glucose dehydrogenase in hormonally responsive breast cancers.
bioRxiv. 2024 Mar 21:2024.03.20.585919. doi: 10.1101/2024.03.20.585919.
5
Differential roles of normal and lung cancer-associated fibroblasts in microvascular network formation.
APL Bioeng. 2024 Mar 19;8(1):016120. doi: 10.1063/5.0188238. eCollection 2024 Mar.

本文引用的文献

1
Deciphering the Mechanics of Cancer Spheroid Growth in 3D Environments through Microfluidics Driven Mechanical Actuation.
Adv Healthc Mater. 2023 Jun;12(14):e2201842. doi: 10.1002/adhm.202201842. Epub 2022 Dec 9.
2
A Robust Method for Perfusable Microvascular Network Formation In Vitro.
Small Methods. 2022 Jun;6(6):e2200143. doi: 10.1002/smtd.202200143. Epub 2022 Apr 3.
3
Human organs-on-chips for disease modelling, drug development and personalized medicine.
Nat Rev Genet. 2022 Aug;23(8):467-491. doi: 10.1038/s41576-022-00466-9. Epub 2022 Mar 25.
4
An Microfluidic Alveolus Model to Study Lung Biomechanics.
Front Bioeng Biotechnol. 2022 Feb 18;10:848699. doi: 10.3389/fbioe.2022.848699. eCollection 2022.
5
Micropathological Chip Modeling the Neurovascular Unit Response to Inflammatory Bone Condition.
Adv Healthc Mater. 2022 Jun;11(11):e2102305. doi: 10.1002/adhm.202102305. Epub 2022 Feb 25.
6
Human Spinal Organoid-on-a-Chip to Model Nociceptive Circuitry for Pain Therapeutics Discovery.
Anal Chem. 2022 Jan 18;94(2):1365-1372. doi: 10.1021/acs.analchem.1c04641. Epub 2021 Dec 20.
7
Identification of a population of peripheral sensory neurons that regulates blood pressure.
Cell Rep. 2021 Jun 1;35(9):109191. doi: 10.1016/j.celrep.2021.109191.
8
Protocol for dissection and culture of murine dorsal root ganglia neurons to study neuropeptide release.
STAR Protoc. 2021 Feb 8;2(1):100333. doi: 10.1016/j.xpro.2021.100333. eCollection 2021 Mar 19.
9
Peripheral sensory neurons promote angiogenesis in neurovascular models derived from hESCs.
Stem Cell Res. 2021 Apr;52:102231. doi: 10.1016/j.scr.2021.102231. Epub 2021 Feb 10.
10
Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models.
Front Bioeng Biotechnol. 2020 Dec 10;8:602646. doi: 10.3389/fbioe.2020.602646. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验