文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种稳健的体外可灌注微血管网络形成方法。

A Robust Method for Perfusable Microvascular Network Formation In Vitro.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.

出版信息

Small Methods. 2022 Jun;6(6):e2200143. doi: 10.1002/smtd.202200143. Epub 2022 Apr 3.


DOI:10.1002/smtd.202200143
PMID:35373502
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9844969/
Abstract

Micropost-based microfluidic devices are widely used for microvascular network (MVN) formation in diverse research fields. However, consistently generating perfusable MVNs of physiological morphology and dimension has proven to be challenging. Here, how initial seeding parameters determine key characteristics of MVN formation is investigated and a robust two-step seeding strategy to generate perfusable physiological MVNs in microfluidic devices is established.

摘要

基于微孔的微流控装置广泛应用于不同研究领域的微血管网络(MVN)形成。然而,持续生成具有生理形态和尺寸的可灌注 MVN 一直具有挑战性。在此,研究了初始接种参数如何决定 MVN 形成的关键特征,并建立了一种稳健的两步接种策略,以在微流控装置中生成可灌注的生理 MVN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/bf798a7b2637/nihms-1862800-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/7337fa621e14/nihms-1862800-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/9af8be22fb43/nihms-1862800-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/dc9c4cacde1f/nihms-1862800-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/24073c0a9633/nihms-1862800-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/f9312072f7d7/nihms-1862800-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/83db9332639d/nihms-1862800-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/8929040824a4/nihms-1862800-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/bf798a7b2637/nihms-1862800-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/7337fa621e14/nihms-1862800-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/9af8be22fb43/nihms-1862800-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/dc9c4cacde1f/nihms-1862800-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/24073c0a9633/nihms-1862800-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/f9312072f7d7/nihms-1862800-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/83db9332639d/nihms-1862800-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/8929040824a4/nihms-1862800-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6a/9844969/bf798a7b2637/nihms-1862800-f0008.jpg

相似文献

[1]
A Robust Method for Perfusable Microvascular Network Formation In Vitro.

Small Methods. 2022-6

[2]
Interstitial flow enhances the formation, connectivity, and function of 3D brain microvascular networks generated within a microfluidic device.

Lab Chip. 2021-12-21

[3]
Stabilization and improved functionality of three-dimensional perfusable microvascular networks in microfluidic devices under macromolecular crowding.

Biomater Res. 2023-4-19

[4]
Control of perfusable microvascular network morphology using a multiculture microfluidic system.

Tissue Eng Part C Methods. 2014-7

[5]
Perfusable Vascular Network with a Tissue Model in a Microfluidic Device.

J Vis Exp. 2018-4-4

[6]
Interstitial flow promotes the formation of functional microvascular networks through upregulation of matrix metalloproteinase-2.

Adv Funct Mater. 2022-10-21

[7]
Cortical spheroid on perfusable microvascular network in a microfluidic device.

PLoS One. 2023

[8]
Microfluidic Model to Mimic Initial Event of Neovascularization.

J Vis Exp. 2021-4-10

[9]
Microscopic matrix remodeling precedes endothelial morphological changes during capillary morphogenesis.

J Biomech Eng. 2013-7-1

[10]
Engineering of functional, perfusable 3D microvascular networks on a chip.

Lab Chip. 2013-4-21

引用本文的文献

[1]
Fabricating Microfluidic Co-Cultures of Immortalized Cell Lines Uncovers Robust Design Principles for the Simultaneous Formation of Patterned, Vascularized, and Stem Cell-Derived Adipose Tissue.

Small. 2025-8

[2]
Initiation of primary T cell-B cell interactions and extrafollicular antibody responses in an organized microphysiological model of the human lymph node.

bioRxiv. 2025-1-15

[3]
Combining Top-Down and Bottom-Up: An Open Microfluidic Microtumor Model for Investigating Tumor Cell-ECM Interaction and Anti-Metastasis.

Small. 2025-3

[4]
Deep and dynamic metabolic and structural imaging in living tissues.

Sci Adv. 2024-12-13

[5]
Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications.

Bioengineering (Basel). 2024-9-24

[6]
Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering.

Mater Today Bio. 2024-10-2

[7]
"Periodontal ligament-on-chip" as a Novel Tool for Studies on the Physiology and Pathology of Periodontal Tissues.

Adv Healthc Mater. 2024-12

[8]
Endometrial decidualization status modulates endometrial microvascular complexity and trophoblast outgrowth in gelatin methacryloyl hydrogels.

NPJ Womens Health. 2024

[9]
Tiny Organs, Big Impact: How Microfluidic Organ-on-Chip Technology Is Revolutionizing Mucosal Tissues and Vasculature.

Bioengineering (Basel). 2024-5-10

[10]
Tissue-Penetrating Ultrasound-Triggered Hydrogel for Promoting Microvascular Network Reconstruction.

Adv Sci (Weinh). 2024-6

本文引用的文献

[1]
Engineered human blood-brain barrier microfluidic model for vascular permeability analyses.

Nat Protoc. 2022-1

[2]
Ion Conductance-Based Perfusability Assay of Vascular Vessel Models in Microfluidic Devices.

Micromachines (Basel). 2021-11-30

[3]
Physiologic flow-conditioning limits vascular dysfunction in engineered human capillaries.

Biomaterials. 2022-1

[4]
Classical and Non-classical Fibrosis Phenotypes Are Revealed by Lung and Cardiac Like Microvascular Tissues On-Chip.

Front Physiol. 2021-10-6

[5]
The vascular niche in next generation microphysiological systems.

Lab Chip. 2021-9-7

[6]
A robust vasculogenic microfluidic model using human immortalized endothelial cells and Thy1 positive fibroblasts.

Biomaterials. 2021-9

[7]
Microfluidic Tumor Vasculature Model to Recapitulate an Endothelial Immune Barrier Expressing FasL.

ACS Biomater Sci Eng. 2021-3-8

[8]
A multi-niche microvascularized human bone marrow (hBM) on-a-chip elucidates key roles of the endosteal niche in hBM physiology.

Biomaterials. 2021-3

[9]
Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature.

Lab Chip. 2021-2-9

[10]
Use of 2-dimensional cell monolayers and 3-dimensional microvascular networks on microfluidic devices shows that iron increases transendothelial adiponectin flux via inducing ROS production.

Biochim Biophys Acta Gen Subj. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索