Suppr超能文献

利用深度残差神经网络提高蛋白质-蛋白质相互作用位点预测

Improving protein-protein interaction site prediction using deep residual neural network.

机构信息

College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.

College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.

出版信息

Anal Biochem. 2023 Jun 1;670:115132. doi: 10.1016/j.ab.2023.115132. Epub 2023 Mar 28.

Abstract

Accurate identification of protein-protein interaction (PPI) sites is significantly important for understanding the mechanism of life and developing new drugs. However, it is expensive and time-consuming to identify PPI sites using wet-lab experiments. Developing computational methods is a new road to identify PPI sites, which can accelerate the procedure of PPI-related research. In this study, we propose a novel deep learning-based method (called D-PPIsite) to improve the accuracy of sequence-based PPI site prediction. In D-PPIsite, four discriminative sequence-driven features, i.e., position specific scoring matrix, relative solvent accessibility, position information and physical properties, are employed to feed into a well-designed deep learning module, consisting of convolutional, squeeze and excitation, and fully connected layers, to learn a prediction model. To reduce the risk of a single prediction model getting stuck in local optima, multiple prediction models with different initialization parameters are selected and integrated into one final model using the mean ensemble strategy. Experimental results on five independent testing data sets demonstrate that the proposed D-PPIsite can achieve an average accuracy of 80.2% and precision of 36.9%, covering 53.5% of all PPI sites while achieving the average Matthews correlation coefficient value (0.330) that is significantly higher than most of existing state-of-the-art prediction methods. We implement a new standalone-version predictor for predicting PPI sites, which is freely available at https://github.com/MingDongup/D-PPIsite for academic use.

摘要

准确识别蛋白质-蛋白质相互作用(PPI)位点对于理解生命机制和开发新药具有重要意义。然而,使用湿实验来识别 PPI 位点既昂贵又耗时。开发计算方法是识别 PPI 位点的新途径,可以加速 PPI 相关研究的进程。在本研究中,我们提出了一种新的基于深度学习的方法(称为 D-PPIsite),以提高基于序列的 PPI 位点预测的准确性。在 D-PPIsite 中,采用了四个有区别的序列驱动特征,即位置特异性评分矩阵、相对溶剂可及性、位置信息和物理特性,将其输入到一个精心设计的深度学习模块中,该模块由卷积、挤压和激励以及全连接层组成,以学习预测模型。为了降低单个预测模型陷入局部最优的风险,选择了多个具有不同初始化参数的预测模型,并使用均值集成策略将其集成到一个最终模型中。在五个独立的测试数据集上的实验结果表明,所提出的 D-PPIsite 可以实现平均准确率 80.2%和精度 36.9%,覆盖了所有 PPI 位点的 53.5%,同时实现了平均马修斯相关系数值(0.330),显著高于大多数现有的最先进的预测方法。我们实现了一个新的独立版本的预测器,用于预测 PPI 位点,可在 https://github.com/MingDongup/D-PPIsite 上免费获取,供学术使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验