Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
Neurosci Res. 2011 May;70(1):9-15. doi: 10.1016/j.neures.2011.02.005. Epub 2011 Feb 23.
Mitochondria are essential organelles for neuronal survival and play important roles in ATP generation, calcium buffering, and apoptotic signaling. Due to their extreme polarity, neurons utilize specialized mechanisms to regulate mitochondrial transport and retention along axons and near synaptic terminals where energy supply and calcium homeostasis are in high demand. Axonal mitochondria undergo saltatory and bidirectional movement and display complex mobility patterns. In cultured neurons, approximately one-third of axonal mitochondria are mobile, while the rest remain stationary. Stationary mitochondria at synapses serve as local energy stations that produce ATP to support synaptic function. In addition, axonal mitochondria maintain local Ca²+ homeostasis at presynaptic boutons. The balance between mobile and stationary mitochondria is dynamic and responds quickly to changes in axonal and synaptic physiology. The coordination of mitochondrial mobility and synaptic activity is crucial for neuronal function synaptic plasticity. In this update article, we introduce recent advances in our understanding of the motor-adaptor complexes and docking machinery that mediate mitochondrial transport and axonal distribution. We will also discuss the molecular mechanisms underlying the complex mobility patterns of axonal mitochondria and how mitochondrial mobility impacts the physiology and function of synapses.
线粒体是神经元存活的必需细胞器,在生成 ATP、缓冲钙和凋亡信号转导中发挥着重要作用。由于其极端的极性,神经元利用专门的机制来调节线粒体在轴突和突触末梢附近的运输和保留,在这些部位,能量供应和钙稳态的需求很高。轴突线粒体进行跳跃式和双向运动,并表现出复杂的运动模式。在培养的神经元中,大约三分之一的轴突线粒体是可移动的,而其余的则保持静止。突触处的静止线粒体充当局部能量站,产生 ATP 以支持突触功能。此外,轴突线粒体在突触前末梢维持局部 Ca²+稳态。移动和静止线粒体之间的平衡是动态的,并能迅速响应轴突和突触生理学的变化。线粒体流动性和突触活动的协调对神经元功能和突触可塑性至关重要。在这篇更新的文章中,我们介绍了对介导线粒体运输和轴突分布的运动衔接复合物和对接机制的理解的最新进展。我们还将讨论轴突线粒体复杂运动模式的分子机制,以及线粒体流动性如何影响突触的生理学和功能。