Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
J Physiol. 2018 Dec;596(24):6263-6287. doi: 10.1113/JP276424. Epub 2018 Nov 10.
This study characterizes the mechanisms underlying defects in synaptic transmission when dynamin-related protein 1 (DRP1) is genetically eliminated. Viral-mediated knockout of DRP1 from the presynaptic terminal at the mouse calyx of Held increased initial release probability, reduced the size of the synaptic vesicle recycling pool and impaired synaptic vesicle recycling. Transmission defects could be partially restored by increasing the intracellular calcium buffering capacity with EGTA-AM, implying close coupling of Ca channels to synaptic vesicles was compromised. Acute restoration of ATP to physiological levels in the presynaptic terminal did not reverse the synaptic defects. Loss of DRP1 impairs mitochondrial morphology in the presynaptic terminal, which in turn seems to arrest synaptic maturation.
Impaired mitochondrial biogenesis and function is implicated in many neurodegenerative diseases, and likely affects synaptic neurotransmission prior to cellular loss. Dynamin-related protein 1 (DRP1) is essential for mitochondrial fission and is disrupted in neurodegenerative disease. In this study, we used the mouse calyx of Held synapse as a model to investigate the impact of presynaptic DRP1 loss on synaptic vesicle (SV) recycling and sustained neurotransmission. In vivo viral expression of Cre recombinase in ventral cochlear neurons of floxed-DRP1 mice generated a presynaptic-specific DRP1 knockout (DRP1-preKO), where the innervated postsynaptic cell was unperturbed. Confocal reconstruction of the calyx terminal suggested SV clusters and mitochondrial content were disrupted, and presynaptic terminal volume was decreased. Using postsynaptic voltage-clamp recordings, we found that DRP1-preKO synapses had larger evoked responses at low frequency stimulation. DRP1-preKO synapses also had profoundly altered short-term plasticity, due to defects in SV recycling. Readily releasable pool size, estimated with high-frequency trains, was dramatically reduced in DRP1-preKO synapses, suggesting an important role for DRP1 in maintenance of release-competent SVs at the presynaptic terminal. Presynaptic Ca accumulation in the terminal was also enhanced in DRP1-preKO synapses. Synaptic transmission defects could be partially rescued with EGTA-AM, indicating close coupling of Ca channels to SV distance normally found in mature terminals may be compromised by DRP1-preKO. Using paired recordings of the presynaptic and postsynaptic compartments, recycling defects could not be reversed by acute dialysis of ATP into the calyx terminals. Taken together, our results implicate a requirement for mitochondrial fission to coordinate postnatal synapse maturation.
本研究描绘了当 dynamin 相关蛋白 1(DRP1)基因缺失时,突触传递缺陷的机制。病毒介导的在小鼠耳蜗球囊 presynaptic 末端敲除 DRP1,增加了初始释放概率,减少了突触小泡再循环池的大小,并损害了突触小泡再循环。通过增加 EGTA-AM 中的细胞内钙缓冲能力,可部分恢复传输缺陷,这意味着 Ca 通道与突触小泡的紧密偶联受到了损害。急性将 presynaptic 末端的 ATP 恢复到生理水平不能逆转突触缺陷。DRP1 的缺失损害了 presynaptic 末端的线粒体形态,这反过来似乎又阻止了突触的成熟。
线粒体生物发生和功能受损与许多神经退行性疾病有关,并且可能在细胞丢失之前影响突触神经传递。dynamin 相关蛋白 1(DRP1)是线粒体分裂所必需的,并且在神经退行性疾病中受到干扰。在这项研究中,我们使用小鼠耳蜗球囊突触作为模型,研究 presynaptic DRP1 缺失对突触小泡(SV)再循环和持续神经传递的影响。在 floxed-DRP1 小鼠的腹侧耳蜗神经元中体内表达 Cre 重组酶,产生 presynaptic 特异性 DRP1 敲除(DRP1-preKO),其中被支配的 postsynaptic 细胞未受干扰。对耳蜗球囊末端的共聚焦重建表明,SV 簇和线粒体含量受到破坏,presynaptic 末端体积减小。使用 postsynaptic 电压钳记录,我们发现 DRP1-preKO 突触在低频刺激时具有更大的诱发反应。由于 SV 再循环缺陷,DRP1-preKO 突触的短期可塑性也发生了深刻改变。通过高频 trains 估计的易释放小泡池大小在 DRP1-preKO 突触中显著减小,表明 DRP1 在维持 presynaptic 末端释放 competent SVs 方面具有重要作用。在 DRP1-preKO 突触中,presynaptic 末端的 Ca 积累也增加了。用 EGTA-AM 部分挽救突触传递缺陷表明,Ca 通道与 SV 距离的紧密偶联通常在成熟的末端中发现,可能因 DRP1-preKO 而受到损害。使用 presynaptic 和 postsynaptic 隔室的配对记录,急性将 ATP 透析到耳蜗球囊中不能逆转再循环缺陷。总之,我们的结果表明,需要线粒体分裂来协调产后突触成熟。