文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 AUC 的权重 LASSO 的稳定性选择。

Stability selection for LASSO with weights based on AUC.

机构信息

Department of Biostatistics and Computing, Yonsei University Graduate School, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.

Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.

出版信息

Sci Rep. 2023 Mar 30;13(1):5207. doi: 10.1038/s41598-023-32517-4.


DOI:10.1038/s41598-023-32517-4
PMID:36997611
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10063650/
Abstract

Stability selection is a variable selection algorithm based on resampling a dataset. Based on stability selection, we propose weighted stability selection to select variables by weighing them using the area under the receiver operating characteristic curve (AUC) from additional modelling. Through an extensive simulation study, we evaluated the performance of the proposed method in terms of the true positive rate (TPR), positive predictive value (PPV), and stability of variable selection. We also assessed the predictive ability of the method using a validation set. The proposed method performed similarly to stability selection in terms of the TPR, PPV, and stability. The AUC of the model fitted on the validation set with the selected variables of the proposed method was consistently higher in specific scenarios. Moreover, when applied to radiomics and speech signal datasets, the proposed method had a higher AUC with fewer variables selected. A major advantage of the proposed method is that it enables researchers to select variables intuitively using relatively simple parameter settings.

摘要

稳定性选择是一种基于对数据集进行重采样的变量选择算法。基于稳定性选择,我们提出了加权稳定性选择,通过使用额外建模的接收者操作特征曲线(ROC)下面积(AUC)对变量进行加权选择。通过广泛的模拟研究,我们从真阳性率(TPR)、阳性预测值(PPV)和变量选择稳定性方面评估了该方法的性能。我们还使用验证集评估了该方法的预测能力。在所提出的方法中,模型拟合在验证集上的 AUC 值在特定场景下始终高于稳定性选择。此外,当应用于放射组学和语音信号数据集时,所提出的方法选择的变量较少,但 AUC 更高。所提出的方法的一个主要优势是,它允许研究人员使用相对简单的参数设置直观地选择变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/dbe6c8695694/41598_2023_32517_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/6d8dc90ca451/41598_2023_32517_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/6ec90d88f53a/41598_2023_32517_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/bbd1fdb4979a/41598_2023_32517_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/d030fc4941ef/41598_2023_32517_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/dbe6c8695694/41598_2023_32517_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/6d8dc90ca451/41598_2023_32517_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/6ec90d88f53a/41598_2023_32517_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/bbd1fdb4979a/41598_2023_32517_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/d030fc4941ef/41598_2023_32517_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999d/10063650/dbe6c8695694/41598_2023_32517_Fig5_HTML.jpg

相似文献

[1]
Stability selection for LASSO with weights based on AUC.

Sci Rep. 2023-3-30

[2]
Epithelial salivary gland tumors: Utility of radiomics analysis based on diffusion-weighted imaging for differentiation of benign from malignant tumors.

J Xray Sci Technol. 2020

[3]
A multi-objective based radiomics feature selection method for response prediction following radiotherapy.

Phys Med Biol. 2023-2-28

[4]
Marker selection via maximizing the partial area under the ROC curve of linear risk scores.

Biostatistics. 2010-8-20

[5]
Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma.

BMC Cancer. 2021-11-24

[6]
Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma.

Eur J Radiol. 2017-11-14

[7]
Stability selection for mixed effect models with large numbers of predictor variables: A simulation study.

Prev Vet Med. 2022-9

[8]
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.

JAMA Netw Open. 2020-10-1

[9]
Soft Tissue Sarcomas: Preoperative Predictive Histopathological Grading Based on Radiomics of MRI.

Acad Radiol. 2018-10-28

[10]
Performance of variable selection methods using stability-based selection.

BMC Res Notes. 2017-4-4

引用本文的文献

[1]
Fire susceptibility assessment in the Carpathians using an interpretable framework.

Sci Rep. 2025-8-18

[2]
Characteristics of ChatGPT users from Germany: Implications for the digital divide from web tracking data.

PLoS One. 2025-1-17

[3]
Network hub gene detection using the entire solution path information.

Genetics. 2025-1-8

[4]
Molecular Landscape of Bladder Cancer: Key Genes, Transcription Factors, and Drug Interactions.

Int J Mol Sci. 2024-10-12

[5]
Unveiling the Mechanisms Underlying the Immunotherapeutic Potential of Gene-miRNA and Drugs in Head and Neck Cancer.

Pharmaceuticals (Basel). 2024-7-10

[6]
Gender Difference in sidE eFfects of ImmuNotherapy: a possible clue to optimize cancEr tReatment (G-DEFINER): study protocol of an observational prospective multicenter study.

Acta Oncol. 2024-4-21

本文引用的文献

[1]
Performance of Prediction Models for Diagnosing Severe Aortic Stenosis Based on Aortic Valve Calcium on Cardiac Computed Tomography: Incorporation of Radiomics and Machine Learning.

Korean J Radiol. 2021-3

[2]
Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial.

Gut. 2021-1

[3]
Radiomics in medical imaging-"how-to" guide and critical reflection.

Insights Imaging. 2020-8-12

[4]
Integration of single-cell multi-omics for gene regulatory network inference.

Comput Struct Biotechnol J. 2020-6-29

[5]
TIGRESS: Trustful Inference of Gene REgulation using Stability Selection.

BMC Syst Biol. 2012-11-22

[6]
Wisdom of crowds for robust gene network inference.

Nat Methods. 2012-7-15

[7]
The meaning and use of the area under a receiver operating characteristic (ROC) curve.

Radiology. 1982-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索