Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Nat Methods. 2012 Jul 15;9(8):796-804. doi: 10.1038/nmeth.2016.
Reconstructing gene regulatory networks from high-throughput data is a long-standing challenge. Through the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we performed a comprehensive blind assessment of over 30 network inference methods on Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae and in silico microarray data. We characterize the performance, data requirements and inherent biases of different inference approaches, and we provide guidelines for algorithm application and development. We observed that no single inference method performs optimally across all data sets. In contrast, integration of predictions from multiple inference methods shows robust and high performance across diverse data sets. We thereby constructed high-confidence networks for E. coli and S. aureus, each comprising ~1,700 transcriptional interactions at a precision of ~50%. We experimentally tested 53 previously unobserved regulatory interactions in E. coli, of which 23 (43%) were supported. Our results establish community-based methods as a powerful and robust tool for the inference of transcriptional gene regulatory networks.
从高通量数据中重建基因调控网络是一个长期存在的挑战。通过“反向工程评估和方法(DREAM)”项目,我们对大肠杆菌、金黄色葡萄球菌、酿酒酵母和计算机芯片微阵列数据上的 30 多种网络推断方法进行了全面的盲评估。我们描述了不同推断方法的性能、数据要求和内在偏差,并为算法应用和开发提供了指导。我们观察到,没有一种推断方法在所有数据集上都表现最佳。相比之下,来自多种推断方法的预测的整合在不同的数据集上显示出稳健和高性能。因此,我们构建了大肠杆菌和金黄色葡萄球菌的高可信度网络,每个网络的精度约为 50%,包含约 1700 个转录相互作用。我们在大肠杆菌中实验测试了 53 个以前未观察到的调控相互作用,其中 23 个(43%)得到了支持。我们的结果确立了基于社区的方法是推断转录基因调控网络的强大而稳健的工具。