School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China.
Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
BMC Cancer. 2021 Nov 24;21(1):1268. doi: 10.1186/s12885-021-08947-6.
Radiomics may provide more objective and accurate predictions for extrahepatic cholangiocarcinoma (ECC). In this study, we developed radiomics models based on magnetic resonance imaging (MRI) and machine learning to preoperatively predict differentiation degree (DD) and lymph node metastasis (LNM) of ECC.
A group of 100 patients diagnosed with ECC was included. The ECC status of all patients was confirmed by pathology. A total of 1200 radiomics features were extracted from axial T1 weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), and apparent diffusion coefficient (ADC) images. A systematical framework considering combinations of five feature selection methods and ten machine learning classification algorithms (classifiers) was developed and investigated. The predictive capabilities for DD and LNM were evaluated in terms of area under precision recall curve (AUPRC), area under the receiver operating characteristic (ROC) curve (AUC), negative predictive value (NPV), accuracy (ACC), sensitivity, and specificity. The prediction performance among models was statistically compared using DeLong test.
For DD prediction, the feature selection method joint mutual information (JMI) and Bagging Classifier achieved the best performance (AUPRC = 0.65, AUC = 0.90 (95% CI 0.75-1.00), ACC = 0.85 (95% CI 0.69-1.00), sensitivity = 0.75 (95% CI 0.30-0.95), and specificity = 0.88 (95% CI 0.64-0.97)), and the radiomics signature was composed of 5 selected features. For LNM prediction, the feature selection method minimum redundancy maximum relevance and classifier eXtreme Gradient Boosting achieved the best performance (AUPRC = 0.95, AUC = 0.98 (95% CI 0.94-1.00), ACC = 0.90 (95% CI 0.77-1.00), sensitivity = 0.75 (95% CI 0.30-0.95), and specificity = 0.94 (95% CI 0.72-0.99)), and the radiomics signature was composed of 30 selected features. However, these two chosen models were not significantly different to other models of higher AUC values in DeLong test, though they were significantly different to most of all models.
MRI radiomics analysis based on machine learning demonstrated good predictive accuracies for DD and LNM of ECC. This shed new light on the noninvasive diagnosis of ECC.
放射组学可能为肝外胆管癌(ECC)提供更客观和准确的预测。在本研究中,我们基于磁共振成像(MRI)和机器学习开发了放射组学模型,以术前预测 ECC 的分化程度(DD)和淋巴结转移(LNM)。
纳入了一组 100 名被诊断为 ECC 的患者。所有患者的 ECC 状态均经病理证实。从轴位 T1 加权成像(T1WI)、T2 加权成像(T2WI)、弥散加权成像(DWI)和表观弥散系数(ADC)图像中提取了 1200 个放射组学特征。开发并研究了一种考虑五种特征选择方法和十种机器学习分类算法(分类器)组合的系统框架。根据精度召回曲线下面积(AUPRC)、接收者操作特征曲线下面积(AUC)、阴性预测值(NPV)、准确性(ACC)、敏感度和特异性,评估 DD 和 LNM 的预测能力。使用 DeLong 检验对模型间的预测性能进行统计学比较。
对于 DD 预测,特征选择方法联合互信息(JMI)和 Bagging 分类器的性能最佳(AUPRC=0.65,AUC=0.90(95%CI 0.75-1.00),ACC=0.85(95%CI 0.69-1.00),敏感度=0.75(95%CI 0.30-0.95),特异性=0.88(95%CI 0.64-0.97)),并且放射组学特征由 5 个选定特征组成。对于 LNM 预测,特征选择方法最小冗余最大相关性和分类器极端梯度增强的性能最佳(AUPRC=0.95,AUC=0.98(95%CI 0.94-1.00),ACC=0.90(95%CI 0.77-1.00),敏感度=0.75(95%CI 0.30-0.95),特异性=0.94(95%CI 0.72-0.99)),并且放射组学特征由 30 个选定特征组成。然而,在 DeLong 检验中,这两个选择的模型与 AUC 值较高的其他模型之间没有显著差异,尽管它们与大多数模型之间有显著差异。
基于机器学习的 MRI 放射组学分析对 ECC 的 DD 和 LNM 具有良好的预测准确性。这为 ECC 的无创诊断提供了新的思路。