Suppr超能文献

基于口腔内照片评估人工智能模型在拥挤分类和提取诊断中的应用。

Evaluation of artificial intelligence model for crowding categorization and extraction diagnosis using intraoral photographs.

机构信息

Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.

Department of Orthodontics, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.

出版信息

Sci Rep. 2023 Mar 30;13(1):5177. doi: 10.1038/s41598-023-32514-7.

Abstract

Determining the severity of dental crowding and the necessity of tooth extraction for orthodontic treatment planning are time-consuming processes and there are no firm criteria. Thus, automated assistance would be useful to clinicians. This study aimed to construct and evaluate artificial intelligence (AI) systems to assist with such treatment planning. A total of 3,136 orthodontic occlusal photographs with annotations by two orthodontists were obtained. Four convolutional neural network (CNN) models, namely ResNet50, ResNet101, VGG16, and VGG19, were adopted for the AI process. Using the intraoral photographs as input, the crowding group and the necessity of tooth extraction were obtained. Arch length discrepancy analysis with AI-detected landmarks was used for crowding categorization. Various statistical and visual analyses were conducted to evaluate the performance. The maxillary and mandibular VGG19 models showed minimum mean errors of 0.84 mm and 1.06 mm for teeth landmark detection, respectively. Analysis of Cohen's weighted kappa coefficient indicated that crowding categorization performance was best in VGG19 (0.73), decreasing in the order of VGG16, ResNet101, and ResNet50. For tooth extraction, the maxillary VGG19 model showed the highest accuracy (0.922) and AUC (0.961). By utilizing deep learning with orthodontic photographs, dental crowding categorization and diagnosis of orthodontic extraction were successfully determined. This suggests that AI can assist clinicians in the diagnosis and decision making of treatment plans.

摘要

确定牙齿拥挤的严重程度和正畸治疗计划中拔牙的必要性是一个耗时的过程,且目前尚无明确的标准。因此,自动化辅助对临床医生来说将是有用的。本研究旨在构建和评估人工智能(AI)系统以协助进行此类治疗计划。共获得了 3136 张正畸咬合照片,以及两位正畸医生的注释。采用了四个卷积神经网络(CNN)模型,即 ResNet50、ResNet101、VGG16 和 VGG19,用于 AI 处理。使用口腔内照片作为输入,获得拥挤组和拔牙的必要性。使用 AI 检测到的标志点进行牙弓长度不调分析,以对拥挤进行分类。进行了各种统计和可视化分析以评估性能。上颌和下颌 VGG19 模型的牙齿标志点检测平均误差最小,分别为 0.84mm 和 1.06mm。Cohen 加权kappa 系数分析表明,VGG19 的拥挤分类性能最佳(0.73),其次是 VGG16、ResNet101 和 ResNet50。对于拔牙,上颌 VGG19 模型的准确率最高(0.922),AUC 最高(0.961)。通过利用正畸照片进行深度学习,可以成功确定牙齿拥挤分类和正畸拔牙的诊断。这表明 AI 可以辅助临床医生进行诊断和治疗计划决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2747/10063582/db009b505872/41598_2023_32514_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验