Mahmoudi Soheil, Gruene Tim, Schröder Christian, Ferjaoui Khalil D, Fröjdh Erik, Mozzanica Aldo, Takaba Kiyofumi, Volkov Anatoliy, Maisriml Julian, Paunović Vladimir, van Bokhoven Jeroen A, Keppler Bernhard K
Department of Inorganic Chemistry, University of Vienna, Vienna, Austria.
Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09405-0.
Atomic partial charges, integral to understanding molecular structure, interactions and reactivity, remain an ambiguous concept lacking a precise quantum-mechanical definition. The accurate determination of atomic particle charges has far-reaching implications in fields such as chemical synthesis, applied materials science and theoretical chemistry, to name a few. They play essential parts in molecular dynamics simulations, which can act as a computational microscope for chemical processes. Until now, no general experimental method has quantified the partial charges of individual atoms in a chemical compound. Here we introduce an experimental method that assigns partial charges based on crystal structure determination through electron diffraction, applicable to any crystalline compound. Seamlessly integrated into standard electron crystallography workflows, this approach requires no specialized software or advanced expertise. Furthermore, it is not limited to specific classes of compounds. The versatility of this method is demonstrated by its application to a wide array of compounds, including the antibiotic ciprofloxacin, the amino acids histidine and tyrosine, and the inorganic zeolite ZSM-5. We refer to this new concept as ionic scattering factors modelling. It fosters a more comprehensive and precise understanding of molecular structures, providing opportunities for applications across numerous fields in the chemical and materials sciences.
原子部分电荷对于理解分子结构、相互作用和反应性至关重要,但仍然是一个缺乏精确量子力学定义的模糊概念。准确确定原子粒子电荷在化学合成、应用材料科学和理论化学等领域有着深远的影响。它们在分子动力学模拟中起着至关重要的作用,分子动力学模拟可以作为化学过程的计算显微镜。到目前为止,还没有通用的实验方法能够量化化合物中单个原子的部分电荷。在此,我们介绍一种基于电子衍射晶体结构测定来分配部分电荷的实验方法,该方法适用于任何晶体化合物。这种方法无缝集成到标准电子晶体学工作流程中,无需专门软件或高级专业知识。此外,它不限于特定类型的化合物。通过将该方法应用于多种化合物,包括抗生素环丙沙星、氨基酸组氨酸和酪氨酸以及无机沸石ZSM-5,证明了该方法的通用性。我们将这一新概念称为离子散射因子建模。它有助于更全面、精确地理解分子结构,为化学和材料科学的众多领域提供应用机会。