Egerton R F, Hayashida M, Malac M
Physics Department, University of Alberta, Edmonton T6G 2E1, Canada.
NRC-Nano, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada.
Micron. 2023 Jun;169:103449. doi: 10.1016/j.micron.2023.103449. Epub 2023 Mar 24.
We explore the properties of elastic and inelastic scattering in a thick organic specimen, together with the mechanisms that provide contrast in a transmission electron microscope (TEM) and scanning-transmission electron microscope (STEM). Experimental data recorded from amorphous carbon are used to predict the bright-field image intensity, mass-thickness contrast and dose-limited resolution as a function of thickness, objective-aperture size, and primary-electron energy E. Combining this information with estimates of chromatic aberration, objective-aperture diffraction and beam broadening in the specimen, we calculate the achievable TEM and STEM resolution to be around 4 nm at E = 300 keV (or below 3 nm at MeV energies) for a 10 µm-diameter objective aperture and 1 - 2 µm thickness of hydrated biological tissue. The 3 MeV resolution for a 10-μm tissue sample is probably closer to 10 nm. We also comment on the error involved in quadrature addition of resolution factors, when one or more of the point-spread functions are non-Gaussian.
我们研究了厚有机样品中弹性和非弹性散射的特性,以及在透射电子显微镜(TEM)和扫描透射电子显微镜(STEM)中产生对比度的机制。利用从非晶碳记录的实验数据来预测明场图像强度、质量厚度对比度和剂量限制分辨率,这些都是厚度、物镜光阑尺寸和一次电子能量E的函数。将这些信息与色差、物镜光阑衍射和样品中束展宽的估计值相结合,我们计算出对于直径为10 µm的物镜光阑和厚度为1 - 2 µm的水合生物组织,在E = 300 keV时(或在兆电子伏能量下低于3 nm),可实现的TEM和STEM分辨率约为4 nm。对于10 µm组织样品,3 MeV时的分辨率可能更接近10 nm。我们还评论了当一个或多个点扩散函数为非高斯函数时,在分辨率因子的正交相加中涉及的误差。