Department of Chemical and Biomolecular Engineering, Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Angew Chem Int Ed Engl. 2023 May 22;62(22):e202302125. doi: 10.1002/anie.202302125. Epub 2023 Apr 25.
Herein we report that ene reductases (EREDs) can facilitate an unprecedented intramolecular β-C-H functionalization reaction for the synthesis of bridged bicyclic nitrogen heterocycles containing the 6-azabicyclo[3.2.1]octane scaffold. To streamline the synthesis of these privileged motifs, we developed a gram-scale one-pot chemoenzymatic cascade by combining iridium photocatalysis with EREDs, using readily available N-phenylglycines and cyclohexenones that can be obtained from biomass. Further derivatization using enzymatic or chemical methods can convert 6-azabicyclo[3.2.1]octan-3-one into 6-azabicyclo[3.2.1]octan-3α-ols, which can be potentially utilized for the synthesis of azaprophen and its analogues for drug discovery. Mechanistic studies revealed the reaction requires oxygen, presumably to produce oxidized flavin, which can selectively dehydrogenate the 3-substituted cyclohexanone derivatives to form the α,β-unsaturated ketone, which subsequently undergoes spontaneous intramolecular aza-Michael addition under basic conditions.
在这里,我们报告了烯还原酶(EREDs)可以促进前所未有的分子内β-C-H 官能化反应,用于合成含有 6-氮杂双环[3.2.1]辛烷支架的桥连双环氮杂环化合物。为了简化这些优势结构的合成,我们开发了一种克级规模的一锅法化学酶级联反应,将铱光催化与 EREDs 结合使用,使用易于获得的 N-苯甘氨酸和环己烯酮,这些都可以从生物质中获得。通过酶或化学方法进一步衍生化,可以将 6-氮杂双环[3.2.1]辛烷-3-酮转化为 6-氮杂双环[3.2.1]辛烷-3α-醇,这些醇可能用于合成氮杂苯及其类似物以进行药物发现。机理研究表明,该反应需要氧气,可能是为了产生氧化黄素,它可以选择性地将 3-取代环己酮衍生物脱氢形成α,β-不饱和酮,随后在碱性条件下自发进行分子内氮杂迈克尔加成。