Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; Department of Anesthesiology, Division of Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
Comput Methods Programs Biomed. 2023 Jun;234:107505. doi: 10.1016/j.cmpb.2023.107505. Epub 2023 Mar 22.
Bedside chest radiographs (CXRs) are challenging to interpret but important for monitoring cardiothoracic disease and invasive therapy devices in critical care and emergency medicine. Taking surrounding anatomy into account is likely to improve the diagnostic accuracy of artificial intelligence and bring its performance closer to that of a radiologist. Therefore, we aimed to develop a deep convolutional neural network for efficient automatic anatomy segmentation of bedside CXRs.
To improve the efficiency of the segmentation process, we introduced a "human-in-the-loop" segmentation workflow with an active learning approach, looking at five major anatomical structures in the chest (heart, lungs, mediastinum, trachea, and clavicles). This allowed us to decrease the time needed for segmentation by 32% and select the most complex cases to utilize human expert annotators efficiently. After annotation of 2,000 CXRs from different Level 1 medical centers at Charité - University Hospital Berlin, there was no relevant improvement in model performance, and the annotation process was stopped. A 5-layer U-ResNet was trained for 150 epochs using a combined soft Dice similarity coefficient (DSC) and cross-entropy as a loss function. DSC, Jaccard index (JI), Hausdorff distance (HD) in mm, and average symmetric surface distance (ASSD) in mm were used to assess model performance. External validation was performed using an independent external test dataset from Aachen University Hospital (n = 20).
The final training, validation, and testing dataset consisted of 1900/50/50 segmentation masks for each anatomical structure. Our model achieved a mean DSC/JI/HD/ASSD of 0.93/0.88/32.1/5.8 for the lung, 0.92/0.86/21.65/4.85 for the mediastinum, 0.91/0.84/11.83/1.35 for the clavicles, 0.9/0.85/9.6/2.19 for the trachea, and 0.88/0.8/31.74/8.73 for the heart. Validation using the external dataset showed an overall robust performance of our algorithm.
Using an efficient computer-aided segmentation method with active learning, our anatomy-based model achieves comparable performance to state-of-the-art approaches. Instead of only segmenting the non-overlapping portions of the organs, as previous studies did, a closer approximation to actual anatomy is achieved by segmenting along the natural anatomical borders. This novel anatomy approach could be useful for developing pathology models for accurate and quantifiable diagnosis.
床边胸部 X 光片(CXR)的解读具有挑战性,但对于监测重症监护和急诊医学中的心胸疾病和侵袭性治疗设备非常重要。考虑周围解剖结构可能会提高人工智能的诊断准确性,并使其性能更接近放射科医生的水平。因此,我们旨在开发一种用于有效自动床边 CXR 解剖分割的深度卷积神经网络。
为了提高分割过程的效率,我们引入了一种带有主动学习方法的“人机交互”分割工作流程,着眼于胸部的五个主要解剖结构(心脏、肺、纵隔、气管和锁骨)。这使我们能够将分割所需的时间减少 32%,并选择最复杂的病例,以便有效地利用人类专家注释器。在对来自柏林 Charité - 大学医院的五个一级医疗中心的 2000 张 CXR 进行注释后,模型性能没有得到显著提高,因此停止了注释过程。使用软 Dice 相似系数(DSC)和交叉熵的组合作为损失函数,对 5 层 U-ResNet 进行了 150 个时期的训练。使用模型性能的 DSC、Jaccard 指数(JI)、Hausdorff 距离(HD)(mm)和平均对称表面距离(ASSD)(mm)进行评估。使用来自亚琛大学医院的独立外部测试数据集(n=20)进行外部验证。
最终的训练、验证和测试数据集包含每个解剖结构的 1900/50/50 个分割掩模。我们的模型在肺、纵隔、锁骨、气管和心脏的平均 DSC/JI/HD/ASSD 方面分别达到 0.93/0.88/32.1/5.8、0.92/0.86/21.65/4.85、0.91/0.84/11.83/1.35、0.9/0.85/9.6/2.19 和 0.88/0.8/31.74/8.73。使用外部数据集进行验证表明,我们的算法具有整体稳健的性能。
使用带有主动学习的高效计算机辅助分割方法,我们的基于解剖结构的模型实现了与最先进方法相当的性能。与之前的研究仅分割器官的不重叠部分不同,通过沿着自然解剖边界进行分割,可以更接近实际解剖结构。这种新的解剖方法可用于开发用于准确和可量化诊断的病理学模型。