Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America.
Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
Phys Med Biol. 2022 May 11;67(10). doi: 10.1088/1361-6560/ac692d.
Current segmentation practice for thoracic cancer RT considers the whole heart as a single organ despite increased risks of cardiac toxicities from irradiation of specific cardiac substructures. Segmenting up to 15 different cardiac substructures can be a very time-intensive process, especially due to their different volume sizes and anatomical variations amongst different patients. In this work, a new deep learning (DL)-based mutual enhancing strategy is introduced for accurate and automatic segmentation, especially of smaller substructures such as coronary arteries.Our proposed method consists of three subnetworks: retina U-net, classification module, and segmentation module. Retina U-net is used as a backbone network architecture that aims to learn deep features from the whole heart. Whole heart feature maps from retina U-net are then transferred to four different sets of classification modules to generate classification localization maps of coronary arteries, great vessels, chambers of the heart, and valves of the heart. Each classification module is in sync with its corresponding subsequent segmentation module in a bootstrapping manner, allowing them to share their encoding paths to generate a mutual enhancing strategy. We evaluated our method on three different datasets: institutional CT datasets (55 subjects) 2) publicly available Multi-Modality Whole Heart Segmentation (MM-WHS) challenge datasets (120 subjects), and Automated Cardiac Diagnosis Challenge (ACDC) datasets (100 subjects). For institutional datasets, we performed five-fold cross-validation on training data (45 subjects) and performed inference on separate hold-out data (10 subjects). For each subject, 15 cardiac substructures were manually contoured by a resident physician and evaluated by an attending radiation oncologist. For the MM-WHS dataset, we trained the network on 100 datasets and performed an inference on a separate hold-out dataset with 20 subjects, each with 7 cardiac substructures. For ACDC datasets, we performed five-fold cross-validation on 100 datasets, each with 3 cardiac substructures. We compared the proposed method against four different network architectures: 3D U-net, mask R-CNN, mask scoring R-CNN, and proposed network without classification module. Segmentation accuracies were statistically compared through dice similarity coefficient, Jaccard, 95% Hausdorff distance, mean surface distance, root mean square distance, center of mass distance, and volume difference.The proposed method generated cardiac substructure segmentations with significantly higher accuracy ( < 0.05) for small substructures, especially for coronary arteries such as left anterior descending artery (CA-LADA) and right coronary artery (CA-RCA) in comparison to four competing methods. For large substructures (i.e. chambers of the heart), our method yielded comparable results to mask scoring R-CNN method, resulting in significantly ( < 0.05) improved segmentation accuracy in comparison to 3D U-net and mask R-CNN.A new DL-based mutual enhancing strategy was introduced for automatic segmentation of cardiac substructures. Overall results of this work demonstrate the ability of the proposed method to improve segmentation accuracies of smaller substructures such as coronary arteries without largely compromising the segmentation accuracies of larger substructures. Fast and accurate segmentations of up to 15 substructures can possibly be used as a tool to rapidly generate substructure segmentations followed by physicians' reviews to improve clinical workflow.
目前,胸部癌症放射治疗的分割实践将整个心脏视为单一器官,尽管特定心脏亚结构的照射会增加心脏毒性的风险。对多达 15 个不同的心脏亚结构进行分割可能是一个非常耗时的过程,特别是由于它们在不同患者中的体积大小和解剖结构存在差异。在这项工作中,我们引入了一种新的基于深度学习(DL)的相互增强策略,用于准确和自动分割,特别是对于较小的亚结构,如冠状动脉。我们提出的方法由三个子网组成:视网膜 U-net、分类模块和分割模块。视网膜 U-net 用作骨干网络架构,旨在从整个心脏中学习深度特征。视网膜 U-net 的整个心脏特征图然后被转移到四个不同的分类模块,以生成冠状动脉、大血管、心脏腔室和心脏瓣膜的分类定位图。每个分类模块都以同步的方式与后续的分割模块同步,允许它们共享其编码路径以生成相互增强策略。我们在三个不同的数据集上评估了我们的方法:机构 CT 数据集(55 个样本);2)公开的多模态全心脏分割(MM-WHS)挑战赛数据集(120 个样本);以及自动心脏诊断挑战赛(ACDC)数据集(100 个样本)。对于机构数据集,我们在训练数据(45 个样本)上进行了五折交叉验证,并在单独的保留数据(10 个样本)上进行了推断。对于每个样本,由住院医师手动勾画 15 个心脏亚结构,并由主治放射肿瘤学家进行评估。对于 MM-WHS 数据集,我们在 100 个数据集上训练网络,并在一个单独的包含 20 个样本的保留数据集上进行推断,每个样本有 7 个心脏亚结构。对于 ACDC 数据集,我们在 100 个数据集上进行了五折交叉验证,每个数据集有 3 个心脏亚结构。我们将提出的方法与四种不同的网络架构进行了比较:3D U-net、掩模 R-CNN、掩模评分 R-CNN 和没有分类模块的提出的网络。通过骰子相似系数、Jaccard、95%Hausdorff 距离、平均表面距离、均方根距离、质心距离和体积差异来比较分割精度。与四种竞争方法相比,所提出的方法在小亚结构(特别是左前降支冠状动脉(CA-LADA)和右冠状动脉(CA-RCA))的分割精度上产生了显著更高的(<0.05)的心脏亚结构分割。对于大亚结构(即心脏腔室),我们的方法与掩模评分 R-CNN 方法的结果相当,与 3D U-net 和掩模 R-CNN 相比,显著提高了(<0.05)分割精度。我们引入了一种新的基于深度学习的相互增强策略,用于自动分割心脏亚结构。这项工作的总体结果表明,所提出的方法能够提高较小亚结构(如冠状动脉)的分割精度,而不会大大降低较大亚结构的分割精度。快速准确地分割多达 15 个亚结构,可能可以用作工具,快速生成亚结构分割,然后由医生进行审查,以改善临床工作流程。