Suppr超能文献

GAGA 相关因子促进果蝇基因组中的环形成。

GAGA-associated factor fosters loop formation in the Drosophila genome.

机构信息

Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA.

Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Mol Cell. 2023 May 4;83(9):1519-1526.e4. doi: 10.1016/j.molcel.2023.03.011. Epub 2023 Mar 31.

Abstract

The impact of genome organization on the control of gene expression persists as a major challenge in regulatory biology. Most efforts have focused on the role of CTCF-enriched boundary elements and TADs, which enable long-range DNA-DNA associations via loop extrusion processes. However, there is increasing evidence for long-range chromatin loops between promoters and distal enhancers formed through specific DNA sequences, including tethering elements, which bind the GAGA-associated factor (GAF). Previous studies showed that GAF possesses amyloid properties in vitro, bridging separate DNA molecules. In this study, we investigated whether GAF functions as a looping factor in Drosophila development. We employed Micro-C assays to examine the impact of defined GAF mutants on genome topology. These studies suggest that the N-terminal POZ/BTB oligomerization domain is important for long-range associations of distant GAGA-rich tethering elements, particularly those responsible for promoter-promoter interactions that coordinate the activities of distant paralogous genes.

摘要

基因组组织对基因表达调控的影响仍然是调控生物学的主要挑战。大多数研究都集中在富含 CTCF 的边界元件和 TAD 的作用上,这些边界元件和 TAD 通过环挤出过程实现长距离 DNA-DNA 相互作用。然而,越来越多的证据表明,启动子和远端增强子之间存在通过特定 DNA 序列形成的长距离染色质环,包括连接元件,它结合 GAGA 相关因子(GAF)。先前的研究表明,GAF 在体外具有淀粉样特性,连接单独的 DNA 分子。在这项研究中,我们研究了 GAF 是否在果蝇发育中作为一个环化因子发挥作用。我们采用微球菌核小体构象捕获分析(Micro-C)实验来检测特定 GAF 突变体对基因组拓扑结构的影响。这些研究表明,N 端 POZ/BTB 寡聚化结构域对于远距离富含 GAGA 的连接元件的长距离相互作用很重要,特别是那些负责协调远距离同源基因活性的启动子-启动子相互作用。

相似文献

1
GAGA-associated factor fosters loop formation in the Drosophila genome.
Mol Cell. 2023 May 4;83(9):1519-1526.e4. doi: 10.1016/j.molcel.2023.03.011. Epub 2023 Mar 31.
2
What are tethering elements?
Curr Opin Genet Dev. 2024 Feb;84:102151. doi: 10.1016/j.gde.2023.102151. Epub 2024 Jan 18.
3
GAGA factor: a multifunctional pioneering chromatin protein.
Cell Mol Life Sci. 2021 May;78(9):4125-4141. doi: 10.1007/s00018-021-03776-z. Epub 2021 Feb 2.
5
DNA distortion and multimerization: novel functions of the glutamine-rich domain of GAGA factor.
J Mol Biol. 1999 Jan 15;285(2):515-25. doi: 10.1006/jmbi.1998.2356.
6
Interaction between the GAGA factor and Mod(mdg4) proteins promotes insulator bypass in Drosophila.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14806-11. doi: 10.1073/pnas.0403959101. Epub 2004 Oct 1.
7
GAGA can mediate enhancer function in trans by linking two separate DNA molecules.
EMBO J. 2002 Apr 2;21(7):1775-81. doi: 10.1093/emboj/21.7.1775.
10

引用本文的文献

1
Distal enhancers loop to proximal enhancers, not to promoters.
Nat Rev Mol Cell Biol. 2025 Aug 26. doi: 10.1038/s41580-025-00889-2.
2
Robust regulatory interplay of enhancers, facilitators, and promoters in a native chromatin context.
bioRxiv. 2025 Jul 9:2025.07.07.663560. doi: 10.1101/2025.07.07.663560.
3
Structural variants in the 3D genome as drivers of disease.
Nat Rev Genet. 2025 Jun 30. doi: 10.1038/s41576-025-00862-x.
4
Sex-specific transcriptome dynamics of during embryonic development.
Genes Dev. 2025 Sep 2;39(17-18):1106-1126. doi: 10.1101/gad.352572.124.
5
Vostok: A looping factor for the organization of the regulatory genome in the Drosophila brain.
Mol Cell. 2025 Jun 19;85(12):2442-2451.e5. doi: 10.1016/j.molcel.2025.05.020. Epub 2025 Jun 10.
6
Mechanisms of enhanced or impaired DNA target selectivity driven by protein dimerization.
bioRxiv. 2025 Feb 23:2025.02.18.638941. doi: 10.1101/2025.02.18.638941.
7
Chromatin Topological Domains Associate With the Rapid Formation of Tandem Duplicates in Plants.
Adv Sci (Weinh). 2025 Feb;12(7):e2408861. doi: 10.1002/advs.202408861. Epub 2024 Dec 27.
8
LDB1 establishes multi-enhancer networks to regulate gene expression.
Mol Cell. 2025 Jan 16;85(2):376-393.e9. doi: 10.1016/j.molcel.2024.11.037. Epub 2024 Dec 24.
9
Evolution and function of chromatin domains across the tree of life.
Nat Struct Mol Biol. 2024 Dec;31(12):1824-1837. doi: 10.1038/s41594-024-01427-y. Epub 2024 Nov 26.
10
Conserved transcription factors coordinate synaptic gene expression through repression.
bioRxiv. 2025 Feb 11:2024.10.30.621128. doi: 10.1101/2024.10.30.621128.

本文引用的文献

1
Kinetic principles underlying pioneer function of GAGA transcription factor in live cells.
Nat Struct Mol Biol. 2022 Jul;29(7):665-676. doi: 10.1038/s41594-022-00800-z. Epub 2022 Jul 14.
2
Transcriptional coupling of distant regulatory genes in living embryos.
Nature. 2022 May;605(7911):754-760. doi: 10.1038/s41586-022-04680-7. Epub 2022 May 4.
3
Genome organization controls transcriptional dynamics during development.
Science. 2022 Feb 4;375(6580):566-570. doi: 10.1126/science.abi7178. Epub 2022 Feb 3.
4
CLAMP and Zelda function together to promote zygotic genome activation.
Elife. 2021 Aug 3;10:e69937. doi: 10.7554/eLife.69937.
5
Drosophila architectural protein CTCF is not essential for fly survival and is able to function independently of CP190.
Biochim Biophys Acta Gene Regul Mech. 2021 Oct;1864(10):194733. doi: 10.1016/j.bbagrm.2021.194733. Epub 2021 Jul 24.
8
GAGA factor: a multifunctional pioneering chromatin protein.
Cell Mol Life Sci. 2021 May;78(9):4125-4141. doi: 10.1007/s00018-021-03776-z. Epub 2021 Feb 2.
9
Pioneer-like factor GAF cooperates with PBAP (SWI/SNF) and NURF (ISWI) to regulate transcription.
Genes Dev. 2021 Jan 1;35(1-2):147-156. doi: 10.1101/gad.341768.120. Epub 2020 Dec 10.
10
Analysis of Hi-C data using SIP effectively identifies loops in organisms from to mammals.
Genome Res. 2020 Mar;30(3):447-458. doi: 10.1101/gr.257832.119. Epub 2020 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验