Aboreden Nicholas G, Lam Jessica C, Goel Viraat Y, Wang Siqing, Wang Xiaokang, Midla Susannah C, Quijano Alma, Keller Cheryl A, Giardine Belinda M, Hardison Ross C, Zhang Haoyue, Hansen Anders S, Blobel Gerd A
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
Mol Cell. 2025 Jan 16;85(2):376-393.e9. doi: 10.1016/j.molcel.2024.11.037. Epub 2024 Dec 24.
How specific enhancer-promoter pairing is established remains mostly unclear. Besides the CTCF/cohesin machinery, few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Using a murine erythroid cell model, we show via acute degradation experiments that LDB1 directly and broadly promotes connectivity among regulatory elements. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined using multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1-occupied sites but aids the formation of a subset of LDB1-anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1 phase, we observe that loop formation and de novo LDB1 occupancy correlate and can occur independently of structural loops. Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. These findings establish LDB1 as a driver of spatial connectivity.
增强子与启动子的特异性配对是如何建立的,目前仍大多不清楚。除了CTCF/黏连蛋白机制外,很少有核因子被研究在物理连接调控元件中起直接作用。利用小鼠红细胞模型,我们通过急性降解实验表明,LDB1直接且广泛地促进调控元件之间的连接。使用多种降解子系统确定,大多数由LDB1介导的接触,即使是那些跨越数百kb的接触,在没有CTCF、黏连蛋白或YY1的情况下也能形成。此外,一种工程化的由LDB1驱动的染色质环是不依赖黏连蛋白的。黏连蛋白驱动的环挤压在LDB1占据的位点不会停滞,而是有助于形成一部分由LDB1锚定的环。利用从有丝分裂到G1期转变过程中核结构的动态重组,我们观察到环的形成和新生的LDB1占据是相关的,并且可以独立于结构环发生。Tri-C和区域捕获微C实验表明,LDB1组织多增强子网络以激活转录。这些发现确立了LDB1作为空间连接驱动因子的地位。