Suppr超能文献

建模语言可预测性对语音可懂度预测的影响。

Modeling the effect of linguistic predictability on speech intelligibility prediction.

机构信息

Department of Electrical and Computer Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.

Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, Illinois 61820, USA.

出版信息

JASA Express Lett. 2023 Mar;3(3):035207. doi: 10.1121/10.0017648.

Abstract

Many existing speech intelligibility prediction (SIP) algorithms can only account for acoustic factors affecting speech intelligibility and cannot predict intelligibility across corpora with different linguistic predictability. To address this, a linguistic component was added to five existing SIP algorithms by estimating linguistic corpus predictability using a pre-trained language model. The results showed improved SIP performance in terms of correlation and prediction error over a mixture of four datasets, each with a different English open-set corpus.

摘要

许多现有的语音可懂度预测 (SIP) 算法只能考虑影响语音可懂度的声学因素,而不能预测不同语言可预测性的语料库之间的可懂度。为了解决这个问题,通过使用预先训练的语言模型来估计语言语料库的可预测性,向五个现有的 SIP 算法中添加了语言成分。结果表明,在四个数据集的混合体中,在相关性和预测误差方面,SIP 性能得到了提高,每个数据集都有不同的英语开放式语料库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24c/10026257/48af27822049/JELAAE-000003-035207_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验