Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.
Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany.
J Chem Phys. 2023 Mar 28;158(12):124121. doi: 10.1063/5.0139894.
A novel local approach for the quantum-chemical computation of excited states is presented, where the concept of the atomic-orbital formulation of the second-order Møller-Plesset energy expression is extended to the second-order algebraic diagrammatic construction scheme by virtue of the Laplace transform. The scaled opposite-spin second-order algebraic diagrammatic construction method with Cholesky decomposed densities and density-fitting, or CDD-DF-SOS-ADC(2) for short, exploits the sparsity of the two-electron repulsion integrals, the atomic ground-state density matrix, and the atomic transition density matrix to drastically reduce the computational effort. By using a local density-fitting approximation, it is shown that asymptotically linear scaling can be achieved for linear carboxylic acids. For electron-dense systems, sub-cubic scaling can be achieved if the excitation is local, and hence the transition density is sparse. Furthermore, the memory footprint and accuracy of the CDD-DF-SOS-ADC(2) method are explored in detail.
提出了一种新颖的局部方法,用于计算激发态的量子化学,其中通过拉普拉斯变换将原子轨道表示的二阶 Møller-Plesset 能量表达式的概念扩展到二阶代数图式构造方案。具有 Cholesky 分解密度和密度拟合的比例相反自旋二阶代数图式构造方法,或简称为 CDD-DF-SOS-ADC(2),利用了双电子排斥积分、原子基态密度矩阵和原子跃迁密度矩阵的稀疏性,从而大大降低了计算工作量。通过使用局部密度拟合近似,对于线性羧酸,可以实现渐近线性比例。对于电子密集系统,如果激发是局部的,并且跃迁密度稀疏,则可以实现次立方比例。此外,详细探讨了 CDD-DF-SOS-ADC(2)方法的内存占用和准确性。