Suppr超能文献

选择嵌入延迟:嵌入技术概述及一种新的使用持久同调的方法。

Selecting embedding delays: An overview of embedding techniques and a new method using persistent homology.

机构信息

Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Crawley, Western Australia 6009, Australia.

出版信息

Chaos. 2023 Mar;33(3):032101. doi: 10.1063/5.0137223.

Abstract

Delay embedding methods are a staple tool in the field of time series analysis and prediction. However, the selection of embedding parameters can have a big impact on the resulting analysis. This has led to the creation of a large number of methods to optimize the selection of parameters such as embedding lag. This paper aims to provide a comprehensive overview of the fundamentals of embedding theory for readers who are new to the subject. We outline a collection of existing methods for selecting embedding lag in both uniform and non-uniform delay embedding cases. Highlighting the poor dynamical explainability of existing methods of selecting non-uniform lags, we provide an alternative method of selecting embedding lags that includes a mixture of both dynamical and topological arguments. The proposed method, Significant Times on Persistent Strands (SToPS), uses persistent homology to construct a characteristic time spectrum that quantifies the relative dynamical significance of each time lag. We test our method on periodic, chaotic, and fast-slow time series and find that our method performs similar to existing automated non-uniform embedding methods. Additionally, n-step predictors trained on embeddings constructed with SToPS were found to outperform other embedding methods when predicting fast-slow time series.

摘要

延迟嵌入方法是时间序列分析和预测领域的主要工具。然而,嵌入参数的选择会对分析结果产生很大的影响。这导致了大量方法的创建,以优化参数的选择,如嵌入滞后。本文旨在为刚接触该主题的读者提供嵌入理论基础的全面概述。我们概述了在均匀和非均匀延迟嵌入情况下选择嵌入滞后的现有方法。突出了选择非均匀滞后的现有方法在动态解释性方面的不足,我们提供了一种选择嵌入滞后的替代方法,该方法包括动态和拓扑论点的混合。所提出的方法,即Persistent Strands 上的显著时间(Significant Times on Persistent Strands,SToPS),使用持久同调来构建一个特征时间谱,量化每个时间滞后的相对动态重要性。我们在周期性、混沌性和快-慢时间序列上测试了我们的方法,发现我们的方法与现有的自动非均匀嵌入方法性能相似。此外,在使用 SToPS 构建的嵌入上训练的 n 步预测器在预测快-慢时间序列时被发现优于其他嵌入方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验