Wüstner Daniel, Gundestrup Henrik Helge, Thaysen Katja
Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, 5230, Denmark.
Sci Rep. 2025 Jul 2;15(1):23489. doi: 10.1038/s41598-025-07255-4.
Oscillations are a common phenomenon in cell biology. They are based on non-linear coupling of biochemical reactions and can show rich dynamic behavior as found in, for example, glycolysis of yeast cells. Here, we show that dynamic mode decomposition (DMD), a numerical algorithm for linear approximation of non-linear dynamics, can be combined with time-delay embedding (TDE) to dissect damped and sustained glycolytic oscillations in simulations and experiments in a fully data-driven manner. Together with an assessment of spurious eigenvalues via residual DMD, this provides a unique spectrum for each scenario, allowing for high-fidelity time-series and image reconstruction. By machine-learning-based clustering of identified DMD modes, we are able to classify NADH oscillations, thereby discovering subtle phenotypes and accounting for cell-to-cell heterogeneity in metabolic activity. This is demonstrated for varying glucose influx and for yeast cells lacking the sterol transporters Ncr1 and Npc2, a model for Niemann Pick type C disease in humans. DMD with TDE can also discern other types of oscillations, as demonstrated for simulated calcium traces, and its forecasting ability is on par with that of Long Short-Term Memory (LSTM) neural networks. Our results demonstrate the potential of DMD for analysis of oscillatory dynamics at the single-cell level.
振荡是细胞生物学中的一种常见现象。它们基于生化反应的非线性耦合,并且能够展现出丰富的动态行为,例如在酵母细胞的糖酵解过程中所发现的那样。在这里,我们表明,动态模式分解(DMD),一种用于非线性动力学线性近似的数值算法,可以与时间延迟嵌入(TDE)相结合,以完全数据驱动的方式剖析模拟和实验中的阻尼和持续糖酵解振荡。通过残差DMD对虚假特征值进行评估,这为每种情况提供了独特的频谱,从而实现高保真时间序列和图像重建。通过基于机器学习对已识别的DMD模式进行聚类,我们能够对NADH振荡进行分类,从而发现细微的表型并解释细胞间代谢活性的异质性。这在不同葡萄糖流入量以及缺乏固醇转运蛋白Ncr1和Npc2的酵母细胞中得到了证明,后者是人类尼曼-匹克C型病的一个模型。带有TDE的DMD还可以辨别其他类型的振荡,如模拟钙迹线所示,并且其预测能力与长短期记忆(LSTM)神经网络相当。我们的结果证明了DMD在单细胞水平振荡动力学分析中的潜力。