Morozov Boris S, Oshchepkov Aleksandr S, Klemt Insa, Agafontsev Aleksandr M, Krishna Swathi, Hampel Frank, Xu Hong-Gui, Mokhir Andriy, Guldi Dirk, Kataev Evgeny
Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany.
Max-Planck-Institut für die Physik des Lichts, Staudtstraße 2, Erlangen 91058, Germany.
JACS Au. 2023 Feb 13;3(3):964-977. doi: 10.1021/jacsau.2c00658. eCollection 2023 Mar 27.
Supramolecular recognition of nucleotides would enable manipulating crucial biochemical pathways like transcription and translation directly and with high precision. Therefore, it offers great promise in medicinal applications, not least in treating cancer or viral infections. This work presents a universal supramolecular approach to target nucleoside phosphates in nucleotides and RNA. The artificial active site in new receptors simultaneously realizes several binding and sensing mechanisms: encapsulation of a nucleobase via dispersion and hydrogen bonding interactions, recognition of the phosphate residue, and a self-reporting feature-"turn-on" fluorescence. Key to the high selectivity is the conscious separation of phosphate- and nucleobase-binding sites by introducing specific spacers in the receptor structure. We have tuned the spacers to achieve high binding affinity and selectivity for cytidine 5' triphosphate coupled to a record 60-fold fluorescence enhancement. The resulting structures are also the first functional models of poly(rC)-binding protein coordinating specifically to C-rich RNA oligomers, e.g., the 5'-AUCCC(C/U) sequence present in poliovirus type 1 and the human transcriptome. The receptors bind to RNA in human ovarian cells A2780, causing strong cytotoxicity at 800 nM. The performance, self-reporting property, and tunability of our approach open up a promising and unique avenue for sequence-specific RNA binding in cells by using low-molecular-weight artificial receptors.
对核苷酸的超分子识别能够直接且高精度地操控转录和翻译等关键生化途径。因此,它在医学应用中极具前景,尤其是在治疗癌症或病毒感染方面。这项工作提出了一种通用的超分子方法,用于靶向核苷酸和RNA中的核苷磷酸。新型受体中的人工活性位点同时实现了多种结合和传感机制:通过色散和氢键相互作用包封核碱基、识别磷酸残基以及一种自报告特性——“开启”荧光。高选择性的关键在于通过在受体结构中引入特定间隔基团,有意识地将磷酸结合位点和核碱基结合位点分隔开。我们对间隔基团进行了调整,以实现对胞苷5'三磷酸的高结合亲和力和选择性,同时伴随着创纪录的60倍荧光增强。所得结构也是聚(rC)结合蛋白与富含C的RNA寡聚物(例如1型脊髓灰质炎病毒和人类转录组中存在的5'-AUCCC(C/U)序列)特异性配位的首个功能模型。这些受体与人卵巢细胞A2780中的RNA结合,在800 nM浓度下产生强烈的细胞毒性。我们方法的性能、自报告特性和可调性,为利用低分子量人工受体在细胞中进行序列特异性RNA结合开辟了一条充满希望且独特的途径。