Suppr超能文献

由尖峰时间依赖性可塑性塑造的神经元之间相位同步和耦合对称性的延迟依赖性转变。

Delay-dependent transitions of phase synchronization and coupling symmetry between neurons shaped by spike-timing-dependent plasticity.

作者信息

Madadi Asl Mojtaba, Ramezani Akbarabadi Saeideh

机构信息

School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531 Iran.

Department of Physics, University of Guilan, Rasht, 41335-1914 Iran.

出版信息

Cogn Neurodyn. 2023 Apr;17(2):523-536. doi: 10.1007/s11571-022-09850-x. Epub 2022 Jul 23.

Abstract

Synchronization plays a key role in learning and memory by facilitating the communication between neurons promoted by synaptic plasticity. Spike-timing-dependent plasticity (STDP) is a form of synaptic plasticity that modifies the strength of synaptic connections between neurons based on the coincidence of pre- and postsynaptic spikes. In this way, STDP simultaneously shapes the neuronal activity and synaptic connectivity in a feedback loop. However, transmission delays due to the physical distance between neurons affect neuronal synchronization and the symmetry of synaptic coupling. To address the question that how transmission delays and STDP can jointly determine the emergent pairwise activity-connectivity patterns, we studied phase synchronization properties and coupling symmetry between two bidirectionally coupled neurons using both phase oscillator and conductance-based neuron models. We show that depending on the range of transmission delays, the activity of the two-neuron motif can achieve an in-phase/anti-phase synchronized state and its connectivity can attain a symmetric/asymmetric coupling regime. The coevolutionary dynamics of the neuronal system and the synaptic weights due to STDP stabilizes the motif in either one of these states by transitions between in-phase/anti-phase synchronization states and symmetric/asymmetric coupling regimes at particular transmission delays. These transitions crucially depend on the phase response curve (PRC) of the neurons, but they are relatively robust to the heterogeneity of transmission delays and potentiation-depression imbalance of the STDP profile.

摘要

同步通过促进由突触可塑性推动的神经元之间的通信,在学习和记忆中发挥关键作用。尖峰时间依赖可塑性(STDP)是一种突触可塑性形式,它基于突触前和突触后尖峰的重合来改变神经元之间突触连接的强度。通过这种方式,STDP在一个反馈回路中同时塑造神经元活动和突触连接性。然而,由于神经元之间的物理距离导致的传输延迟会影响神经元同步和突触耦合的对称性。为了解决传输延迟和STDP如何共同决定出现的成对活动-连接模式这一问题,我们使用相位振荡器和基于电导的神经元模型,研究了两个双向耦合神经元之间的相位同步特性和耦合对称性。我们表明,根据传输延迟的范围,双神经元基序的活动可以实现同相/反相同步状态,其连接性可以达到对称/非对称耦合状态。由于STDP导致的神经元系统和突触权重的共同进化动力学,通过在特定传输延迟下在同相/反相同步状态和对称/非对称耦合状态之间的转变,将基序稳定在这些状态中的任何一种。这些转变关键取决于神经元的相位响应曲线(PRC),但它们对传输延迟的异质性和STDP分布的增强-抑制不平衡相对稳健。

相似文献

3
5
Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.小脑输入阶段的赫布型峰电位时间依赖性可塑性。
J Neurosci. 2017 Mar 15;37(11):2809-2823. doi: 10.1523/JNEUROSCI.2079-16.2016. Epub 2017 Feb 10.

引用本文的文献

1

本文引用的文献

8
Desynchronization Transitions in Adaptive Networks.自适应网络中的去同步跃迁。
Phys Rev Lett. 2021 Jan 15;126(2):028301. doi: 10.1103/PhysRevLett.126.028301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验