Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058, Erlangen, Germany.
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstr. 22, 04103, Leipzig, Germany.
J Biol Phys. 2023 Dec;49(4):483-507. doi: 10.1007/s10867-023-09642-2. Epub 2023 Sep 1.
Synchronization is a widespread phenomenon in the brain. Despite numerous studies, the specific parameter configurations of the synaptic network structure and learning rules needed to achieve robust and enduring synchronization in neurons driven by spike-timing-dependent plasticity (STDP) and temporal networks subject to homeostatic structural plasticity (HSP) rules remain unclear. Here, we bridge this gap by determining the configurations required to achieve high and stable degrees of complete synchronization (CS) and phase synchronization (PS) in time-varying small-world and random neural networks driven by STDP and HSP. In particular, we found that decreasing P (which enhances the strengthening effect of STDP on the average synaptic weight) and increasing F (which speeds up the swapping rate of synapses between neurons) always lead to higher and more stable degrees of CS and PS in small-world and random networks, provided that the network parameters such as the synaptic time delay [Formula: see text], the average degree [Formula: see text], and the rewiring probability [Formula: see text] have some appropriate values. When [Formula: see text], [Formula: see text], and [Formula: see text] are not fixed at these appropriate values, the degree and stability of CS and PS may increase or decrease when F increases, depending on the network topology. It is also found that the time delay [Formula: see text] can induce intermittent CS and PS whose occurrence is independent F. Our results could have applications in designing neuromorphic circuits for optimal information processing and transmission via synchronization phenomena.
同步是大脑中普遍存在的现象。尽管有许多研究,但在由尖峰时间依赖可塑性 (STDP) 驱动的神经元和受稳态结构可塑性 (HSP) 规则影响的时间网络中,实现稳健和持久同步所需的突触网络结构和学习规则的具体参数配置仍不清楚。在这里,我们通过确定实现由 STDP 和 HSP 驱动的时变小世界和随机神经网络中高度稳定的完全同步 (CS) 和相位同步 (PS) 的配置来弥补这一差距。特别是,我们发现,降低 P(增强 STDP 对平均突触权重的强化作用)和增加 F(加快神经元之间突触的交换速度)总是导致小世界和随机网络中 CS 和 PS 的程度更高且更稳定,前提是网络参数,如突触时滞 [Formula: see text]、平均度 [Formula: see text] 和重连概率 [Formula: see text] 具有一些适当的值。当 [Formula: see text]、[Formula: see text] 和 [Formula: see text] 不在这些适当值时,随着 F 的增加,CS 和 PS 的程度和稳定性可能会增加或减少,这取决于网络拓扑。还发现,时滞 [Formula: see text] 可以诱导间歇性 CS 和 PS,其发生与 F 无关。我们的研究结果可用于设计神经形态电路,通过同步现象实现最佳信息处理和传输。