Suppr超能文献

基于 RUS-CHN 方法的实时自动化骨龄评估系统。

A real-time automated bone age assessment system based on the RUS-CHN method.

机构信息

College of Medical Informatics, Chongqing Medical University, Chongqing, China.

Medical Data Science Academy, Chongqing Medical University, Chongqing, China.

出版信息

Front Endocrinol (Lausanne). 2023 Mar 15;14:1073219. doi: 10.3389/fendo.2023.1073219. eCollection 2023.

Abstract

BACKGROUND

Bone age is the age of skeletal development and is a direct indicator of physical growth and development in children. Most bone age assessment (BAA) systems use direct regression with the entire hand bone map or first segmenting the region of interest (ROI) using the clinical method and then deriving the bone age based on the characteristics of the ROI, which takes more time and requires more computation.

MATERIALS AND METHODS

Key bone grades and locations were determined using three real-time target detection models and Key Bone Search (KBS) post-processing using the RUS-CHN approach, and then the age of the bones was predicted using a Lightgbm regression model. Intersection over Union (IOU) was used to evaluate the precision of the key bone locations, while the mean absolute error (MAE), the root mean square error (RMSE), and the root mean squared percentage error (RMSPE) were used to evaluate the discrepancy between predicted and true bone age. The model was finally transformed into an Open Neural Network Exchange (ONNX) model and tested for inference speed on the GPU (RTX 3060).

RESULTS

The three real-time models achieved good results with an average (IOU) of no less than 0.9 in all key bones. The most accurate outcomes for the inference results utilizing KBS were a MAE of 0.35 years, a RMSE of 0.46 years, and a RMSPE of 0.11. Using the GPU RTX3060 for inference, the critical bone level and position inference time was 26 ms. The bone age inference time was 2 ms.

CONCLUSIONS

We developed an automated end-to-end BAA system that is based on real-time target detection, obtaining key bone developmental grade and location in a single pass with the aid of KBS, and using Lightgbm to obtain bone age, capable of outputting results in real-time with good accuracy and stability, and able to be used without hand-shaped segmentation. The BAA system automatically implements the entire process of the RUS-CHN method and outputs information on the location and developmental grade of the 13 key bones of the RUS-CHN method along with the bone age to assist the physician in making judgments, making full use of clinical knowledge.

摘要

背景

骨龄是骨骼发育的年龄,是儿童身体生长发育的直接指标。大多数骨龄评估(BAA)系统使用整个手骨图谱的直接回归,或者首先使用临床方法对感兴趣区域(ROI)进行分割,然后根据 ROI 的特征得出骨龄,这需要更多的时间和计算量。

材料和方法

使用三个实时目标检测模型和 Key Bone Search(KBS)使用 RUS-CHN 方法进行后处理,确定关键骨等级和位置,然后使用 Lightgbm 回归模型预测骨骼年龄。交并比(IOU)用于评估关键骨位置的精度,而平均绝对误差(MAE)、均方根误差(RMSE)和均方根百分比误差(RMSPE)用于评估预测骨龄与真实骨龄之间的差异。最后将模型转换为 Open Neural Network Exchange(ONNX)模型,并在 GPU(RTX 3060)上进行推理速度测试。

结果

三个实时模型在所有关键骨骼中均取得了不错的结果,平均(IOU)不低于 0.9。利用 KBS 进行推断结果最准确的是 MAE 为 0.35 岁、RMSE 为 0.46 岁和 RMSPE 为 0.11。在 GPU RTX3060 上进行推理时,关键骨水平和位置推断时间为 26ms。骨龄推断时间为 2ms。

结论

我们开发了一种基于实时目标检测的全自动端到端 BAA 系统,该系统可在单个通道中辅助 KBS 获得关键骨骼发育等级和位置,并使用 Lightgbm 获得骨龄,能够实时输出具有良好准确性和稳定性的结果,并且无需对手形进行分割。BAA 系统自动实现 RUS-CHN 方法的整个过程,并输出 RUS-CHN 方法的 13 个关键骨骼的位置和发育等级以及骨龄信息,以协助医生进行判断,充分利用临床知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9698/10050736/d2908edef05a/fendo-14-1073219-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验