Suppr超能文献

基于深度学习的沙特手部 X 光图像患者骨龄自动估算:一项回顾性研究。

Deep learning-based automated bone age estimation for Saudi patients on hand radiograph images: a retrospective study.

机构信息

Department of Radiological Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Medical Imaging Department, KAAUH, Riyadh, Saudi Arabia.

出版信息

BMC Med Imaging. 2024 Aug 1;24(1):199. doi: 10.1186/s12880-024-01378-2.

Abstract

PURPOSE

In pediatric medicine, precise estimation of bone age is essential for skeletal maturity evaluation, growth disorder diagnosis, and therapeutic intervention planning. Conventional techniques for determining bone age depend on radiologists' subjective judgments, which may lead to non-negligible differences in the estimated bone age. This study proposes a deep learning-based model utilizing a fully connected convolutional neural network(CNN) to predict bone age from left-hand radiographs.

METHODS

The data set used in this study, consisting of 473 patients, was retrospectively retrieved from the PACS (Picture Achieving and Communication System) of a single institution. We developed a fully connected CNN consisting of four convolutional blocks, three fully connected layers, and a single neuron as output. The model was trained and validated on 80% of the data using the mean-squared error as a cost function to minimize the difference between the predicted and reference bone age values through the Adam optimization algorithm. Data augmentation was applied to the training and validation sets yielded in doubling the data samples. The performance of the trained model was evaluated on a test data set (20%) using various metrics including, the mean absolute error (MAE), median absolute error (MedAE), root-mean-squared error (RMSE), and mean absolute percentage error (MAPE). The code of the developed model for predicting the bone age in this study is available publicly on GitHub at https://github.com/afiosman/deep-learning-based-bone-age-estimation .

RESULTS

Experimental results demonstrate the sound capabilities of our model in predicting the bone age on the left-hand radiographs as in the majority of the cases, the predicted bone ages and reference bone ages are nearly close to each other with a calculated MAE of 2.3 [1.9, 2.7; 0.95 confidence level] years, MedAE of 2.1 years, RMAE of 3.0 [1.5, 4.5; 0.95 confidence level] years, and MAPE of 0.29 (29%) on the test data set.

CONCLUSION

These findings highlight the usability of estimating the bone age from left-hand radiographs, helping radiologists to verify their own results considering the margin of error on the model. The performance of our proposed model could be improved with additional refining and validation.

摘要

目的

在儿科医学中,精确估计骨龄对于骨骼成熟度评估、生长障碍诊断和治疗干预计划至关重要。传统的骨龄测定技术依赖于放射科医生的主观判断,这可能导致估计骨龄存在不可忽视的差异。本研究提出了一种基于深度学习的模型,利用全连接卷积神经网络(CNN)从左手 X 光片中预测骨龄。

方法

本研究使用的数据集是从一家机构的 PACS(图像获取和通信系统)中回顾性检索到的,包含 473 名患者。我们开发了一个由四个卷积块、三个全连接层和一个单个神经元作为输出组成的全连接 CNN。模型使用均方误差作为代价函数,通过 Adam 优化算法最小化预测骨龄值与参考骨龄值之间的差异,在 80%的数据上进行训练和验证。数据扩充应用于训练集和验证集,使数据样本增加一倍。使用平均绝对误差(MAE)、中位数绝对误差(MedAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)等多种指标,在 20%的测试数据集上评估训练模型的性能。本研究中开发的用于预测骨龄的模型的代码可在 GitHub 上公开获取,网址为 https://github.com/afiosman/deep-learning-based-bone-age-estimation。

结果

实验结果表明,我们的模型在预测左手 X 光片上的骨龄方面具有出色的能力,在大多数情况下,预测骨龄和参考骨龄非常接近,在测试数据集上计算得到的 MAE 为 2.3 岁[95%置信区间:1.9 岁,2.7 岁]、MedAE 为 2.1 岁、RMSE 为 3.0 岁[95%置信区间:1.5 岁,4.5 岁]和 MAPE 为 0.29(29%)。

结论

这些发现强调了从左手 X 光片中估算骨龄的可用性,有助于放射科医生在考虑模型误差范围的情况下验证自己的结果。通过进一步细化和验证,我们提出的模型的性能可以得到提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee43/11295702/8d60f8be3efe/12880_2024_1378_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验