Suppr超能文献

用于光学相干断层扫描图像散斑减少的多尺度去噪生成对抗网络

Multiscale denoising generative adversarial network for speckle reduction in optical coherence tomography images.

作者信息

Yu Xiaojun, Ge Chenkun, Li Mingshuai, Aziz Muhammad Zulkifal, Mo Jianhua, Fan Zeming

机构信息

Northwestern Polytechnical University, School of Automation, Xi'an, China.

Soochow University, School of Electronics and Information Engineering, Suzhou, China.

出版信息

J Med Imaging (Bellingham). 2023 Mar;10(2):024006. doi: 10.1117/1.JMI.10.2.024006. Epub 2023 Mar 30.

Abstract

PURPOSE

Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging modality capable of providing both cross-sectional and three-dimensional images of tissue microstructures. Owing to its low-coherence interferometry nature, however, OCT inevitably suffers from speckles, which diminish image quality and mitigate the precise disease diagnoses, and therefore, despeckling mechanisms are highly desired to alleviate the influences of speckles on OCT images.

APPROACH

We propose a multiscale denoising generative adversarial network (MDGAN) for speckle reductions in OCT images. A cascade multiscale module is adopted as MDGAN basic block first to raise the network learning capability and take advantage of the multiscale context, and then a spatial attention mechanism is proposed to refine the denoised images. For enormous feature learning in OCT images, a deep back-projection layer is finally introduced to alternatively upscale and downscale the features map of MDGAN.

RESULTS

Experiments with two different OCT image datasets are conducted to verify the effectiveness of the proposed MDGAN scheme. Results compared those of the state-of-the-art existing methods show that MDGAN is able to improve both peak-single-to-noise ratio and signal-to-noise ratio by 3 dB at most, with its structural similarity index measurement and contrast-to-noise ratio being 1.4% and 1.3% lower than those of the best existing methods.

CONCLUSIONS

Results demonstrate that MDGAN is effective and robust for OCT image speckle reductions and outperforms the best state-of-the-art denoising methods in different cases. It could help alleviate the influence of speckles in OCT images and improve OCT imaging-based diagnosis.

摘要

目的

光学相干断层扫描(OCT)是一种无创的高分辨率成像方式,能够提供组织微观结构的横截面图像和三维图像。然而,由于其低相干干涉测量的特性,OCT不可避免地会受到散斑的影响,这会降低图像质量并影响疾病的精确诊断,因此,非常需要去噪机制来减轻散斑对OCT图像的影响。

方法

我们提出了一种多尺度去噪生成对抗网络(MDGAN)用于减少OCT图像中的散斑。首先采用级联多尺度模块作为MDGAN的基本模块,以提高网络的学习能力并利用多尺度上下文信息,然后提出一种空间注意力机制来细化去噪后的图像。为了在OCT图像中进行大量的特征学习,最后引入一个深度反投影层来交替地对MDGAN的特征图进行上采样和下采样。

结果

使用两个不同的OCT图像数据集进行实验,以验证所提出的MDGAN方案的有效性。与现有最先进方法的结果比较表明,MDGAN最多能够将峰值信噪比和信噪比提高3dB,其结构相似性指数测量值和对比度噪声比分别比现有最佳方法低1.4%和1.3%。

结论

结果表明,MDGAN对于减少OCT图像散斑是有效且稳健的,并且在不同情况下优于现有最先进的去噪方法。它有助于减轻散斑对OCT图像的影响,并改善基于OCT成像的诊断。

相似文献

1
Multiscale denoising generative adversarial network for speckle reduction in optical coherence tomography images.
J Med Imaging (Bellingham). 2023 Mar;10(2):024006. doi: 10.1117/1.JMI.10.2.024006. Epub 2023 Mar 30.
2
Noise-imitation learning: unpaired speckle noise reduction for optical coherence tomography.
Phys Med Biol. 2024 Sep 3;69(18). doi: 10.1088/1361-6560/ad708c.
3
DHNet: High-resolution and hierarchical network for cross-domain OCT speckle noise reduction.
Med Phys. 2022 Sep;49(9):5914-5928. doi: 10.1002/mp.15712. Epub 2022 Jun 1.
4
Self-supervised Self2Self denoising strategy for OCT speckle reduction with a single noisy image.
Biomed Opt Express. 2024 Jan 30;15(2):1233-1252. doi: 10.1364/BOE.515520. eCollection 2024 Feb 1.
6
Optical coherence tomography image denoising using a generative adversarial network with speckle modulation.
J Biophotonics. 2020 Apr;13(4):e201960135. doi: 10.1002/jbio.201960135. Epub 2020 Feb 3.
7
SiameseGAN: A Generative Model for Denoising of Spectral Domain Optical Coherence Tomography Images.
IEEE Trans Med Imaging. 2021 Jan;40(1):180-192. doi: 10.1109/TMI.2020.3024097. Epub 2020 Dec 29.
8
Self-supervised Blind2Unblind deep learning scheme for OCT speckle reductions.
Biomed Opt Express. 2023 May 18;14(6):2773-2795. doi: 10.1364/BOE.481870. eCollection 2023 Jun 1.
9
Noise-Powered Disentangled Representation for Unsupervised Speckle Reduction of Optical Coherence Tomography Images.
IEEE Trans Med Imaging. 2021 Oct;40(10):2600-2614. doi: 10.1109/TMI.2020.3045207. Epub 2021 Sep 30.

本文引用的文献

1
Real-time OCT image denoising using a self-fusion neural network.
Biomed Opt Express. 2022 Feb 14;13(3):1398-1409. doi: 10.1364/BOE.451029. eCollection 2022 Mar 1.
2
Sm-Net OCT: a deep-learning-based speckle-modulating optical coherence tomography.
Opt Express. 2021 Aug 2;29(16):25511-25523. doi: 10.1364/OE.431475.
3
Semi-Supervised Capsule cGAN for Speckle Noise Reduction in Retinal OCT Images.
IEEE Trans Med Imaging. 2021 Apr;40(4):1168-1183. doi: 10.1109/TMI.2020.3048975. Epub 2021 Apr 1.
4
Noise-Powered Disentangled Representation for Unsupervised Speckle Reduction of Optical Coherence Tomography Images.
IEEE Trans Med Imaging. 2021 Oct;40(10):2600-2614. doi: 10.1109/TMI.2020.3045207. Epub 2021 Sep 30.
5
N2NSR-OCT: Simultaneous denoising and super-resolution in optical coherence tomography images using semisupervised deep learning.
J Biophotonics. 2021 Jan;14(1):e202000282. doi: 10.1002/jbio.202000282. Epub 2020 Oct 19.
6
Upconversion Nanoparticle Powered Microneedle Patches for Transdermal Delivery of siRNA.
Adv Healthc Mater. 2020 Jan;9(2):e1900635. doi: 10.1002/adhm.201900635. Epub 2019 Dec 1.
8
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.
IEEE Trans Image Process. 2017 Jul;26(7):3142-3155. doi: 10.1109/TIP.2017.2662206. Epub 2017 Feb 1.
9
Multifiber angular compounding optical coherence tomography for speckle reduction.
Opt Lett. 2017 Jan 1;42(1):125-128. doi: 10.1364/OL.42.000125.
10
Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering.
Comput Biol Med. 2016 Apr 1;71:97-107. doi: 10.1016/j.compbiomed.2016.02.003. Epub 2016 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验