Suppr超能文献

噪声模拟学习:用于光学相干断层扫描的非配对散斑噪声减少。

Noise-imitation learning: unpaired speckle noise reduction for optical coherence tomography.

机构信息

Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, People's Republic of China.

University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.

出版信息

Phys Med Biol. 2024 Sep 3;69(18). doi: 10.1088/1361-6560/ad708c.

Abstract

Optical coherence tomography (OCT) is widely used in clinical practice for its non-invasive, high-resolution imaging capabilities. However, speckle noise inherent to its low coherence principle can degrade image quality and compromise diagnostic accuracy. While deep learning methods have shown promise in reducing speckle noise, obtaining well-registered image pairs remains challenging, leading to the development of unpaired methods. Despite their potential, existing unpaired methods suffer from redundancy in network structures or interaction mechanisms. Therefore, a more streamlined method for unpaired OCT denoising is essential.In this work, we propose a novel unpaired method for OCT image denoising, referred to as noise-imitation learning (NIL). NIL comprises three primary modules: the noise extraction module, which extracts noise features by denoising noisy images; the noise imitation module, which synthesizes noisy images and generates fake clean images; and the adversarial learning module, which differentiates between real and fake clean images through adversarial training. The complexity of NIL is significantly lower than that of previous unpaired methods, utilizing only one generator and one discriminator for training.By efficiently fusing unpaired images and employing adversarial training, NIL can extract more speckle noise information to enhance denoising performance. Building on NIL, we propose an OCT image denoising pipeline, NIL-NAFNet. This pipeline achieved PSNR, SSIM, and RMSE values of 31.27 dB, 0.865, and 7.00, respectively, on the PKU37 dataset. Extensive experiments suggest that our method outperforms state-of-the-art unpaired methods both qualitatively and quantitatively.These findings indicate that the proposed NIL is a simple yet effective method for unpaired OCT speckle noise reduction. The OCT denoising pipeline based on NIL demonstrates exceptional performance and efficiency. By addressing speckle noise without requiring well-registered image pairs, this method can enhance image quality and diagnostic accuracy in clinical practice.

摘要

光学相干断层扫描(OCT)以其非侵入性、高分辨率成像能力在临床实践中得到广泛应用。然而,其低相干原理固有的散斑噪声会降低图像质量并影响诊断准确性。虽然深度学习方法在降低散斑噪声方面显示出了前景,但获得良好配准的图像对仍然具有挑战性,因此发展了非配对方法。尽管它们具有潜力,但现有的非配对方法在网络结构或相互作用机制方面存在冗余。因此,开发一种更精简的非配对 OCT 去噪方法至关重要。

在这项工作中,我们提出了一种新的非配对 OCT 图像去噪方法,称为噪声模仿学习(NIL)。NIL 由三个主要模块组成:噪声提取模块,通过去噪噪声图像提取噪声特征;噪声模仿模块,合成噪声图像并生成假清洁图像;以及对抗学习模块,通过对抗训练区分真实和假清洁图像。NIL 的复杂性明显低于以前的非配对方法,仅使用一个生成器和一个鉴别器进行训练。

通过有效地融合非配对图像并采用对抗训练,NIL 可以提取更多的散斑噪声信息,从而增强去噪性能。基于 NIL,我们提出了一种 OCT 图像去噪流水线,NIL-NAFNet。该流水线在 PKU37 数据集上的 PSNR、SSIM 和 RMSE 值分别达到 31.27dB、0.865 和 7.00。大量实验表明,我们的方法在定性和定量方面都优于最先进的非配对方法。

这些发现表明,所提出的 NIL 是一种简单而有效的非配对 OCT 散斑降噪方法。基于 NIL 的 OCT 去噪流水线具有出色的性能和效率。通过在不要求良好配准图像对的情况下解决散斑噪声问题,该方法可以提高临床实践中的图像质量和诊断准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验