Suppr超能文献

铜掺杂调制电子结构以促进钴硫化物在锂氧电池中的电催化性能。

Modulating Electronic Structure with Copper Doping to Promote the Electrocatalytic Performance of Cobalt Disulfide in Li-O Batteries.

机构信息

Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

National Engineering Research Center for Nanotechnology, Shanghai, 200241, P. R. China.

出版信息

Small. 2023 Jul;19(27):e2300602. doi: 10.1002/smll.202300602. Epub 2023 Apr 3.

Abstract

Introducing heteroatom into catalyst lattice to modulate its intrinsic electronic structure is an efficient strategy to improve the electrocatalytic performance in Li-O batteries. Herein, Cu-doped CoS (Cu-CoS ) nanoparticles are fabricated by a solvothermal method and evaluated as promising cathode catalysts for Li-O batteries. Based on physicochemical analysis as well as density functional theory calculations, it is revealed that doping Cu heteroatom in CoS lattice can increase the covalency of the CoS bond with more electron transfer from Co 3d to S 3p orbitals, thereby resulting in less electron transfer from Co 3d to O 2p orbitals of Li-O species, which can weaken the adsorption strength toward Li-O intermediates, decrease the reaction barrier, and thus improve the catalytic performance in Li-O batteries. As a result, the battery using Cu-CoS nanoparticles in the cathode exhibits superior kinetics, reversibility, capacity, and cycling performance, as compared to the battery based on CoS catalyst. This work provides an atomic-level insight into the rational design of transition-metal dichalcogenide catalysts via regulating the electronic structure for high-performance Li-O batteries.

摘要

将杂原子引入催化剂晶格中以调节其本征电子结构是提高锂-氧电池电催化性能的有效策略。在此,通过溶剂热法制备了 Cu 掺杂的 CoS(Cu-CoS)纳米粒子,并将其评估为具有前景的锂-氧电池阴极催化剂。通过物理化学分析以及密度泛函理论计算,揭示了在 CoS 晶格中掺杂 Cu 杂原子可以增加 CoS 键的共价性,从而导致更多的电子从 Co 3d 轨道转移到 S 3p 轨道,进而减少 Li-O 物种中 Co 3d 轨道到 O 2p 轨道的电子转移,从而削弱对 Li-O 中间体的吸附强度,降低反应势垒,从而提高锂-氧电池的催化性能。结果表明,与基于 CoS 催化剂的电池相比,在阴极中使用 Cu-CoS 纳米粒子的电池具有更优的动力学、可逆性、容量和循环性能。这项工作为通过调节电子结构来合理设计用于高性能锂-氧电池的过渡金属二卤化物催化剂提供了原子级的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验