Suppr超能文献

177Lu-DOTATATE 治疗学:从预治疗 68Ga-DOTATATE PET 和临床生物标志物预测肾脏剂量。

177Lu-DOTATATE Theranostics: Predicting Renal Dosimetry From Pretherapy 68Ga-DOTATATE PET and Clinical Biomarkers.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor.

From the Department of Radiology, University of Michigan, Ann Arbor.

出版信息

Clin Nucl Med. 2023 May 1;48(5):393-399. doi: 10.1097/RLU.0000000000004599. Epub 2023 Feb 8.

Abstract

PURPOSE

Pretreatment predictions of absorbed doses can be especially valuable for patient selection and dosimetry-guided individualization of radiopharmaceutical therapy. Our goal was to build regression models using pretherapy 68Ga-DOTATATE PET uptake data and other baseline clinical factors/biomarkers to predict renal absorbed dose delivered by 177Lu-DOTATATE peptide receptor radionuclide therapy (177Lu-PRRT) for neuroendocrine tumors. We explore the combination of biomarkers and 68Ga PET uptake metrics, hypothesizing that they will improve predictive power over univariable regression.

PATIENTS AND METHODS

Pretherapy 68Ga-DOTATATE PET/CTs were analyzed for 25 patients (50 kidneys) who also underwent quantitative 177Lu SPECT/CT imaging at approximately 4, 24, 96, and 168 hours after cycle 1 of 177Lu-PRRT. Kidneys were contoured on the CT of the PET/CT and SPECT/CT using validated deep learning-based tools. Dosimetry was performed by coupling the multi-time point SPECT/CT images with an in-house Monte Carlo code. Pretherapy renal PET SUV metrics, activity concentration per injected activity (Bq/mL/MBq), and other baseline clinical factors/biomarkers were investigated as predictors of the 177Lu SPECT/CT-derived mean absorbed dose per injected activity to the kidneys using univariable and bivariable models. Leave-one-out cross-validation (LOOCV) was used to estimate model performance using root mean squared error and absolute percent error in predicted renal absorbed dose including mean absolute percent error (MAPE) and associated standard deviation (SD).

RESULTS

The median therapy-delivered renal dose was 0.5 Gy/GBq (range, 0.2-1.0 Gy/GBq). In LOOCV of univariable models, PET uptake (Bq/mL/MBq) performs best with MAPE of 18.0% (SD = 13.3%), and estimated glomerular filtration rate (eGFR) gives an MAPE of 28.5% (SD = 19.2%). Bivariable regression with both PET uptake and eGFR gives LOOCV MAPE of 17.3% (SD = 11.8%), indicating minimal improvement over univariable models.

CONCLUSIONS

Pretherapy 68Ga-DOTATATE PET renal uptake can be used to predict post-177Lu-PRRT SPECT-derived mean absorbed dose to the kidneys with accuracy within 18%, on average. Compared with PET uptake alone, including eGFR in the same model to account for patient-specific kinetics did not improve predictive power. Following further validation of these preliminary findings in an independent cohort, predictions using renal PET uptake can be used in the clinic for patient selection and individualization of treatment before initiating the first cycle of PRRT.

摘要

目的

治疗前预测吸收剂量对于选择患者和放射性药物治疗的剂量引导个体化特别有价值。我们的目标是使用治疗前的 68Ga-DOTATATE PET 摄取数据和其他基线临床因素/生物标志物构建回归模型,以预测神经内分泌肿瘤的 177Lu-DOTATATE 肽受体放射性核素治疗(177Lu-PRRT)所带来的肾脏吸收剂量。我们探索了生物标志物和 68Ga PET 摄取指标的结合,假设它们将提高预测能力,优于单变量回归。

方法

对 25 名患者(50 个肾脏)进行了治疗前的 68Ga-DOTATATE PET/CT 分析,这些患者还在 177Lu-PRRT 第 1 周期后约 4、24、96 和 168 小时进行了定量 177Lu SPECT/CT 成像。使用经过验证的深度学习工具,在 PET/CT 和 SPECT/CT 的 CT 上对肾脏进行勾画。通过将多时间点 SPECT/CT 图像与内部蒙特卡罗代码耦合来进行剂量测定。使用单变量和双变量模型,研究了治疗前肾脏 PET SUV 指标、每注射活性的放射性浓度(Bq/mL/MBq)以及其他基线临床因素/生物标志物,作为预测 177Lu SPECT/CT 衍生的肾脏每注射活性吸收剂量的指标。使用均方根误差和预测肾吸收剂量的绝对百分比误差(包括平均绝对百分比误差(MAPE)及其相关标准差(SD))进行了包括 LOOCV 在内的模型性能的估计。

结果

中位治疗肾剂量为 0.5 Gy/GBq(范围,0.2-1.0 Gy/GBq)。在单变量模型的 LOOCV 中,PET 摄取(Bq/mL/MBq)的 MAPE 为 18.0%(SD = 13.3%),表现最佳,估算肾小球滤过率(eGFR)的 MAPE 为 28.5%(SD = 19.2%)。使用 PET 摄取和 eGFR 的双变量回归,LOOCV 的 MAPE 为 17.3%(SD = 11.8%),表明与单变量模型相比,仅有微小的改善。

结论

治疗前 68Ga-DOTATATE PET 肾脏摄取可用于预测 177Lu-PRRT 后 SPECT 衍生的肾脏平均吸收剂量,平均准确率在 18%以内。与单独使用 PET 摄取相比,在相同模型中包含 eGFR 以解释患者特异性动力学并不能提高预测能力。在独立队列中进一步验证这些初步发现后,可在临床中使用肾脏 PET 摄取进行预测,以便在开始 PRRT 第 1 周期之前选择患者并对治疗进行个体化。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验