Suppr超能文献

卷积神经网络在疑似冠心病行冠状动脉计算机断层成像血管造影术患者的风险分层中的应用。

Convolutional neural networks on risk stratification of patients with suspected coronary artery disease undergoing coronary computed tomography angiography.

机构信息

Department of Radiology and Nuclear Medicine, German Heart Center Munich, Technical University of Munich, Lazarettstrasse 36, 80636, Munich, Germany.

Department of Diagnostic and Interventional Radiology, Klinikum München Neuperlach, Munich, Germany.

出版信息

Int J Cardiovasc Imaging. 2023 Jun;39(6):1209-1216. doi: 10.1007/s10554-023-02824-y. Epub 2023 Apr 3.

Abstract

To assess the prognostic value of convolutional neural networks (CNN) on coronary computed tomography angiography (CCTA) in comparison to conventional computed tomography (CT) reporting and clinical risk scores. 5468 patients who underwent CCTA with suspected coronary artery disease (CAD) were included. Primary endpoint was defined as a composite of all-cause death, myocardial infarction, unstable angina or late revascularization (> 90 days after CCTA). Early revascularization was additionally included as a training endpoint for the CNN algorithm. Cardiovascular risk stratification was based on Morise score and the extent of CAD (eoCAD) as assessed on CCTA. Semiautomatic post-processing was performed for vessel delineation and annotation of calcified and non-calcified plaque areas. Using a two-step training of a DenseNet-121 CNN the entire network was trained with the training endpoint, followed by training the feature layer with the primary endpoint. During a median follow-up of 7.2 years, the primary endpoint occurred in 334 patients. CNN showed an AUC of 0.631 ± 0.015 for prediction of the combined primary endpoint, while combining it with conventional CT and clinical risk scores showed an improvement of AUC from 0.646 ± 0.014 (based on eoCAD only) to 0.680 ± 0.015 (p < 0.0001) and from 0.619 ± 0.0149 (based on Morise Score only) to 0.6812 ± 0.0145 (p < 0.0001), respectively. In a stepwise model including all prediction methods, it was found an AUC of 0.680 ± 0.0148. CNN analysis showed to improve conventional CCTA-derived and clinical risk stratification when evaluating CCTA of patients with suspected CAD.

摘要

评估卷积神经网络 (CNN) 在冠状动脉计算机断层扫描血管造影 (CCTA) 中的预后价值,与传统计算机断层扫描 (CT) 报告和临床风险评分相比。纳入了 5468 例疑似冠心病 (CAD) 患者进行 CCTA。主要终点定义为全因死亡、心肌梗死、不稳定型心绞痛或晚期血运重建 (CCTA 后>90 天) 的复合终点。早期血运重建也被纳入 CNN 算法的训练终点。心血管风险分层基于 Morise 评分和 CCTA 上评估的 CAD 程度 (eoCAD)。半自动后处理用于血管勾画和钙化及非钙化斑块区域的标注。使用两步训练的 DenseNet-121 CNN,用训练终点训练整个网络,然后用主要终点训练特征层。在中位数为 7.2 年的随访中,主要终点在 334 例患者中发生。CNN 对联合主要终点的预测 AUC 为 0.631±0.015,而将其与传统 CT 和临床风险评分相结合时,AUC 从 0.646±0.014(仅基于 eoCAD)改善至 0.680±0.015(p<0.0001),从 0.619±0.0149(仅基于 Morise 评分)改善至 0.6812±0.0145(p<0.0001)。在包括所有预测方法的逐步模型中,发现 AUC 为 0.680±0.0148。当评估疑似 CAD 患者的 CCTA 时,CNN 分析显示可改善传统 CCTA 衍生和临床风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8163/10220106/2406918f2cbe/10554_2023_2824_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验