Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, VIC, Australia; MonashHeart, Monash Health, Melbourne, VIC, Australia.
Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Lancet Digit Health. 2022 Apr;4(4):e256-e265. doi: 10.1016/S2589-7500(22)00022-X.
Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity.
This international, multicentre study included nine cohorts of patients undergoing CCTA at 11 sites, who were assigned into training and test sets. Data were retrospectively collected on patients with a wide range of clinical presentations of coronary artery disease who underwent CCTA between Nov 18, 2010, and Jan 25, 2019. A novel deep learning convolutional neural network was trained to segment coronary plaque in 921 patients (5045 lesions). The deep learning network was then applied to an independent test set, which included an external validation cohort of 175 patients (1081 lesions) and 50 patients (84 lesions) assessed by intravascular ultrasound within 1 month of CCTA. We evaluated the prognostic value of deep learning-based plaque measurements for fatal or non-fatal myocardial infarction (our primary outcome) in 1611 patients from the prospective SCOT-HEART trial, assessed as dichotomous variables using multivariable Cox regression analysis, with adjustment for the ASSIGN clinical risk score.
In the overall test set, there was excellent or good agreement, respectively, between deep learning and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0·964) and percent diameter stenosis (ICC 0·879; both p<0·0001). When compared with intravascular ultrasound, there was excellent agreement for deep learning total plaque volume (ICC 0·949) and minimal luminal area (ICC 0·904). The mean per-patient deep learning plaque analysis time was 5·65 s (SD 1·87) versus 25·66 min (6·79) taken by experts. Over a median follow-up of 4·7 years (IQR 4·0-5·7), myocardial infarction occurred in 41 (2·5%) of 1611 patients from the SCOT-HEART trial. A deep learning-based total plaque volume of 238·5 mm or higher was associated with an increased risk of myocardial infarction (hazard ratio [HR] 5·36, 95% CI 1·70-16·86; p=0·0042) after adjustment for the presence of deep learning-based obstructive stenosis (HR 2·49, 1·07-5·50; p=0·0089) and the ASSIGN clinical risk score (HR 1·01, 0·99-1·04; p=0·35).
Our novel, externally validated deep learning system provides rapid measurements of plaque volume and stenosis severity from CCTA that agree closely with expert readers and intravascular ultrasound, and could have prognostic value for future myocardial infarction.
National Heart, Lung, and Blood Institute and the Miriam & Sheldon G Adelson Medical Research Foundation.
从冠状动脉 CT 血管造影(CCTA)中定量动脉粥样硬化斑块可以准确评估冠状动脉疾病的负担和预后。我们旨在开发和验证一种用于 CCTA 衍生斑块体积和狭窄严重程度测量的深度学习系统。
这项国际多中心研究纳入了在 11 个地点进行 CCTA 的 9 个队列的患者,这些患者被分配到训练组和测试组。回顾性收集了 2010 年 11 月 18 日至 2019 年 1 月 25 日期间患有广泛冠心病临床表现的患者的数据。训练了一种新的深度学习卷积神经网络,用于分割 921 名患者(5045 处病变)的冠状动脉斑块。然后,将深度学习网络应用于一个独立的测试集,其中包括来自前瞻性 SCOT-HEART 试验的 175 名患者(1081 处病变)和 50 名患者(84 处病变)的外部验证队列,这些患者在 CCTA 后 1 个月内通过血管内超声进行评估。我们使用多变量 Cox 回归分析,根据 ASSIGN 临床风险评分,将基于深度学习的斑块测量对致命或非致命性心肌梗死(我们的主要结局)的预后价值评估为 1611 名来自前瞻性 SCOT-HEART 试验的患者的二项变量,调整后 ASSIGN 临床风险评分。
在整个测试集中,深度学习和专家读者分别对总斑块体积(组内相关系数 [ICC] 0.964)和直径狭窄百分比(ICC 0.879;均 p<0.0001)的测量结果具有极好或良好的一致性。与血管内超声相比,深度学习的总斑块体积(ICC 0.949)和最小管腔面积(ICC 0.904)具有极好的一致性。每位患者的深度学习斑块分析时间平均为 5.65 秒(标准差 1.87),而专家则需要 25.66 分钟(6.79)。在中位数为 4.7 年(IQR 4.0-5.7)的随访中,来自 SCOT-HEART 试验的 1611 名患者中有 41 名(2.5%)发生心肌梗死。在调整基于深度学习的阻塞性狭窄(HR 2.49,1.07-5.50;p=0.0089)和 ASSIGN 临床风险评分(HR 1.01,0.99-1.04;p=0.35)后,深度学习的总斑块体积为 238.5 mm 或更高与心肌梗死的风险增加相关(风险比 [HR] 5.36,95%CI 1.70-16.86;p=0.0042)。
我们新开发的、经过外部验证的深度学习系统可从 CCTA 中快速测量斑块体积和狭窄程度,与专家读者和血管内超声密切一致,并且可能对未来的心肌梗死具有预后价值。
美国国立心肺血液研究所和米里亚姆和谢尔登·G·阿德尔森医学研究基金会。