Suppr超能文献

基于傅里叶变换图像翻译和多模型集成自训练策略的医学无监督领域自适应框架。

A medical unsupervised domain adaptation framework based on Fourier transform image translation and multi-model ensemble self-training strategy.

机构信息

College of Information Science and Technology, Donghua University, Shanghai, China.

出版信息

Int J Comput Assist Radiol Surg. 2023 Oct;18(10):1885-1894. doi: 10.1007/s11548-023-02867-5. Epub 2023 Apr 3.

Abstract

PURPOSE

Well-established segmentation models will suffer performance degradation when deployed on data with heterogeneous features, especially in the field of medical image analysis. Although researchers have proposed many approaches to address this problem in recent years, most of them are feature-adaptation-based adversarial networks, the problems such as training instability often arise in adversarial training. To ameliorate this challenge and improve the robustness of processing data with different distributions, we propose a novel unsupervised domain adaptation framework for cross-domain medical image segmentation.

METHODS

In our proposed approach, Fourier transform guided images translation and multi-model ensemble self-training are integrated into a unified framework. First, after Fourier transform, the amplitude spectrum of source image is replaced with that of target image, and reconstructed by the inverse Fourier transform. Second, we augment target dataset with the synthetic cross-domain images, performing supervised learning using the original source set labels while implementing regularization by entropy minimization on predictions of unlabeled target data. We employ several segmentation networks with different hyperparameters simultaneously, pseudo-labels are generated by averaging their outputs and comparing to confidence threshold, and gradually optimize the quality of pseudo-labels through multiple rounds self-training.

RESULTS

We employed our framework to two liver CT datasets for bidirectional adaptation experiments. In both experiments, compared to the segmentation network without domain alignment, dice similarity coefficient (DSC) increased by nearly 34% and average symmetric surface distance (ASSD) decreased by about 10. The DSC values were also improved by 10.8% and 6.7%, respectively, compared to the existing model.

CONCLUSION

We propose a Fourier transform-based UDA framework, the experimental results and comparisons demonstrate that the proposed method can effectively diminish the performance degradation caused by domain shift and performs best on the cross-domain segmentation tasks. Our proposed multi-model ensemble training strategy can also improve the robustness of the segmentation system.

摘要

目的

成熟的分割模型在部署到具有异构特征的数据时会出现性能下降,尤其是在医学图像分析领域。尽管近年来研究人员提出了许多解决该问题的方法,但大多数都是基于特征适配的对抗网络,对抗训练中经常会出现训练不稳定等问题。为了改善这一挑战并提高处理不同分布数据的鲁棒性,我们提出了一种新的用于跨域医学图像分割的无监督域自适应框架。

方法

在我们提出的方法中,傅里叶变换引导的图像翻译和多模型集成自训练被集成到一个统一的框架中。首先,在傅里叶变换之后,源图像的幅度谱被替换为目标图像的幅度谱,并通过逆傅里叶变换进行重构。其次,我们使用原始源集标签对合成的跨域图像进行有监督学习,同时对未标记目标数据的预测进行熵最小化正则化,从而增强目标数据集。我们同时使用几个具有不同超参数的分割网络,通过平均它们的输出并与置信度阈值进行比较来生成伪标签,并通过多轮自训练逐渐优化伪标签的质量。

结果

我们将我们的框架应用于两个肝脏 CT 数据集进行双向适应实验。在这两个实验中,与没有域对齐的分割网络相比,骰子相似系数(DSC)提高了近 34%,平均对称面距离(ASSD)降低了约 10%。与现有模型相比,DSC 值分别提高了 10.8%和 6.7%。

结论

我们提出了一种基于傅里叶变换的 UDA 框架,实验结果和比较表明,该方法可以有效地减少域偏移引起的性能下降,并在跨域分割任务中表现最佳。我们提出的多模型集成训练策略也可以提高分割系统的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验