Department for Signal Theory and Communications, Universidad de Alcalá, 28800, Alcalá de Henares, Madrid, Spain.
DETEL - Dep. of Electronics and Communications Engineering, UERJ - Rio de Janeiro State University, Rio de Janeiro, Brazil.
Med Biol Eng Comput. 2023 Sep;61(9):2227-2240. doi: 10.1007/s11517-023-02802-5. Epub 2023 Apr 3.
Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings. Graphical Abstract Clinical Noise Severity Classification based on Machine Learning techniques towards Long-Term ECG Monitoring.
噪声和伪影强烈影响心电图(ECG)的长期监测(LTM)质量,使得其部分部分难以用于诊断。根据临床医生对心电图的解释方式,噪声的临床严重程度定义了定性质量评分,而不是从定量角度评估噪声。因此,临床噪声是指不同水平的定性噪声严重程度的等级,旨在从临床角度阐明哪些 ECG 片段是有效的,以实现诊断,而不是传统的方法,它根据定量严重程度评估噪声。本工作提出使用机器学习(ML)技术根据临床噪声分类法对不同的定性噪声严重程度进行分类,使用标注数据库作为金标准。使用五种有代表性的 ML 方法(K 最近邻、决策树、支持向量机、单层感知机和随机森林)进行了比较研究。这些模型以时间和频域中的信号质量指数以及从统计角度的特征为输入,以区分从无效的 ECG 片段中区分出有效的 ECG 片段。开发了一种稳健的方法,以防止对数据集和患者的过度拟合,考虑到平衡类、患者分离和测试集中的患者旋转。通过使用单层感知机方法,所有提出的学习系统在测试集上均表现出良好的分类性能,召回率、精度和 F1 分数分别高达 0.78、0.80 和 0.77。这些系统提供了一种分类解决方案,用于评估来自 LTM 记录的 ECG 的临床质量。