Holgado-Cuadrado Roberto, Plaza-Seco Carmen, Lovisolo Lisandro, Blanco-Velasco Manuel
IEEE Trans Biomed Eng. 2025 Jan;72(1):425-434. doi: 10.1109/TBME.2024.3454545. Epub 2025 Jan 15.
In Long-Term Monitoring (LTM), noise significantly impacts the quality of the electrocardiogram (ECG), posing challenges for accurate diagnosis and time-consuming analysis. The clinical severity of noise refers to the difficulty in interpreting the clinical content of the ECG, in contrast to the traditional approach based on quantitative severity. In a previous study, we trained Machine Learning (ML) algorithms using a data repository labeled according to the clinical severity. In this work, we explore Deep Learning (DL) models in the same database to design architectures that provide explainability of the decision making process.
We have developed two sets of Convolutional Neural Networks (CNNs): a 1-D CNN model designed from scratch, and pre-trained 2-D CNNs fine-tuned through transfer learning. Additionally, we have designed two Autoencoder (AE) architectures to provide model interpretability by exploiting the data regionalization in the latent spaces.
The DL systems yield superior classification performance than the previous ML approaches, achieving an F1-score up to 0.84in the test set considering patient separation to avoid intra-patient overfitting. The interpretable architectures have shown similar performance with the advantage of qualitative explanations.
The integration of DL and interpretable systems has proven to be highly effective in classifying clinical noise in LTM ECG recordings. This approach can enhance clinicians' confidence in clinical decision support systems based on learning methods, a key point for this technology transfer.
The proposed systems can help healthcare professionals to discriminate the parts of the ECG that contain valuable information to provide a diagnosis.
在长期监测(LTM)中,噪声会显著影响心电图(ECG)的质量,给准确诊断和耗时的分析带来挑战。与基于定量严重程度的传统方法不同,噪声的临床严重程度指的是解读心电图临床内容的难度。在之前的一项研究中,我们使用根据临床严重程度标注的数据存储库训练了机器学习(ML)算法。在这项工作中,我们在同一数据库中探索深度学习(DL)模型,以设计能够对决策过程提供可解释性的架构。
我们开发了两组卷积神经网络(CNN):一组是从零开始设计的一维CNN模型,另一组是通过迁移学习进行微调的预训练二维CNN。此外,我们还设计了两种自动编码器(AE)架构,通过利用潜在空间中的数据区域化来提供模型可解释性。
与之前的ML方法相比,DL系统具有更优的分类性能,在考虑患者分离以避免患者内过拟合的测试集中,F1分数高达0.84。可解释架构表现出相似的性能,且具有定性解释的优势。
事实证明,DL与可解释系统的集成在对LTM心电图记录中的临床噪声进行分类方面非常有效。这种方法可以增强临床医生对基于学习方法的临床决策支持系统的信心,这是该技术转移的关键点。
所提出的系统可以帮助医疗保健专业人员区分心电图中包含有价值信息以进行诊断的部分。