School of Life & Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, China.
Shenzhen Institute of Beihang University, Shenzhen, 518063, China.
Med Biol Eng Comput. 2023 Sep;61(9):2305-2316. doi: 10.1007/s11517-023-02830-1. Epub 2023 Apr 3.
Accurate classification of leukocytes is crucial for the diagnosis of hematologic malignancies, particularly leukemia. However, traditional leukocyte classification methods are time-consuming and subject to subjective interpretation by examiners. To address this issue, we aimed to develop a leukocyte classification system capable of accurately classifying 11 leukocyte classes, which would aid radiologists in diagnosing leukemia. Our proposed two-stage classification scheme involved a multi-model fusion based on ResNet for rough leukocyte classification, which focused on shape features, followed by fine-grained leukocyte classification using support vector machine for lymphocytes based on texture features. Our dataset consisted of 11,102 microscopic leukocyte images of 11 classes. Our proposed method achieved accurate leukocyte subtype classification with high levels of accuracy, sensitivity, specificity, and precision of 97.03 ± 0.05, 96.76 ± 0.05, 99.65 ± 0.05, and 96.54 ± 0.05, respectively, in the test set. The experimental results demonstrate that the leukocyte classification model based on multi-model fusion can effectively classify 11 leukocyte classes, providing valuable technical support for enhancing the performance of hematology analyzers.
准确的白细胞分类对于血液恶性肿瘤(尤其是白血病)的诊断至关重要。然而,传统的白细胞分类方法耗时且容易受到检验员的主观解释影响。为了解决这个问题,我们旨在开发一种能够准确分类 11 种白细胞类别的白细胞分类系统,帮助放射科医生诊断白血病。我们提出的两阶段分类方案涉及基于 ResNet 的多模型融合进行粗略的白细胞分类,重点关注形状特征,然后使用支持向量机根据纹理特征对淋巴细胞进行细粒度的白细胞分类。我们的数据集包含 11 个类别的 11102 个微观白细胞图像。我们的方法在测试集上实现了 97.03±0.05 的高精度、96.76±0.05 的高灵敏度、99.65±0.05 的高特异性和 96.54±0.05 的高准确率的白细胞亚型分类。实验结果表明,基于多模型融合的白细胞分类模型可以有效地对 11 种白细胞类进行分类,为提高血液分析仪的性能提供了有价值的技术支持。