Diagnostic Imaging and Radiotherapy, Centre for Diagnostic, Therapeutic and Investigative Sciences (CODTIS), Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia.
National Cancer Institute, Ministry of Health, Jalan P7, Presint 7, 62250, Putrajaya, Malaysia.
J Cancer Surviv. 2024 Aug;18(4):1297-1308. doi: 10.1007/s11764-023-01371-8. Epub 2023 Apr 3.
Irradiation of the brain regions from nasopharyngeal carcinoma (NPC) radiotherapy (RT) is frequently unavoidable, which may result in radiation-induced cognitive deficit. Using deep learning (DL), the study aims to develop prediction models in predicting compromised cognition in patients following NPC RT using remote assessments and determine their relation to the quality of life (QoL) and MRI changes.
Seventy patients (20-76 aged) with MRI imaging (pre- and post-RT (6 months-1 year)) and complete cognitive assessments were recruited. Hippocampus, temporal lobes (TLs), and cerebellum were delineated and dosimetry parameters were extracted. Assessments were given post-RT via telephone (Telephone Interview Cognitive Status (TICS), Telephone Montreal Cognitive Assessment (T-MoCA), Telephone Mini Addenbrooke's Cognitive Examination (Tele-MACE), and QLQ-H&N 43). Regression and deep neural network (DNN) models were used to predict post-RT cognition using anatomical and treatment dose features.
Remote cognitive assessments were inter-correlated (r > 0.9). TLs showed significance in pre- and post-RT volume differences and cognitive deficits, that are correlated with RT-associated volume atrophy and dose distribution. Good classification accuracy based on DNN area under receiver operating curve (AUROC) for cognitive prediction (T-MoCA AUROC = 0.878, TICS AUROC = 0.89, Tele-MACE AUROC = 0.919).
DL-based prediction models assessed using remote assessments can assist in predicting cognitive deficit following NPC RT. Comparable results of remote assessments in assessing cognition suggest its possibility in replacing standard assessments.
Application of prediction models in individual patient enables tailored interventions to be provided in managing cognitive changes following NPC RT.
鼻咽癌放疗(RT)常不可避免地照射到脑区,这可能导致放疗引起的认知功能障碍。本研究旨在利用深度学习(DL)开发预测模型,通过远程评估预测 NPC RT 后患者认知功能受损的情况,并确定其与生活质量(QoL)和 MRI 变化的关系。
共纳入 70 例(年龄 20-76 岁)患者,均有 MRI 影像学资料(RT 前和 RT 后(6 个月-1 年))和完整的认知评估。对海马体、颞叶(TLs)和小脑进行勾画,并提取剂量学参数。RT 后通过电话进行评估(电话简易智力状态检查(TICS)、电话蒙特利尔认知评估(T-MoCA)、电话 mini 阿登布鲁克认知测验(Tele-MACE)和 QLQ-H&N 43)。采用回归和深度神经网络(DNN)模型,使用解剖和治疗剂量特征预测 RT 后认知功能。
远程认知评估呈高度相关性(r>0.9)。TLs 在 RT 前后的体积差异和认知缺陷方面具有显著性,与 RT 相关的体积萎缩和剂量分布相关。基于 DNN 的 T-MoCA 曲线下面积(AUROC)的认知预测的分类准确性较好(AUROC=0.878),TICS AUROC=0.89,Tele-MACE AUROC=0.919)。
基于 DL 的预测模型通过远程评估进行评估,可辅助预测 NPC RT 后认知功能障碍。远程评估在评估认知方面具有可比性,这表明其有可能替代标准评估。
预测模型在个体患者中的应用,使得可以为 NPC RT 后认知变化的管理提供有针对性的干预措施。