Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
Department of Chemical Engineering, Feng Chia University, Taichung, 40724, Taiwan.
Angew Chem Int Ed Engl. 2023 Jun 26;62(26):e202303582. doi: 10.1002/anie.202303582. Epub 2023 Apr 25.
The design of ion-selective membranes is the key towards efficient reverse electrodialysis-based osmotic power conversion. The tradeoff between ion selectivity (output voltage) and ion permeability (output current) in existing porous membranes, however, limits the upgradation of power generation efficiency for practical applications. Thus, we provide the simple guidelines based on fundamentals of ion transport in nanofluidics for promoting osmotic power conversion. In addition, we discuss strategies for optimizing membrane performance through analysis of various material parameters in membrane design, such as pore size, surface charge, pore density, membrane thickness, ion pathway, pore order, and ionic diode effect. Lastly, a perspective on the future directions of membrane design to further maximize the efficiency of osmotic power conversion is outlined.
离子选择性膜的设计是实现高效基于反向电渗析的渗透能转换的关键。然而,现有多孔膜中离子选择性(输出电压)和离子透过率(输出电流)之间的权衡限制了实际应用中发电效率的提高。因此,我们根据纳流体制备中离子输运的基本原理提供了简单的指导方针,以促进渗透能转换。此外,我们还通过分析膜设计中各种材料参数(如孔径、表面电荷、孔密度、膜厚、离子通道、孔序和离子二极管效应)来讨论优化膜性能的策略。最后,概述了膜设计的未来发展方向,以进一步最大化渗透能转换的效率。