Tsutsui Makusu, Hsu Wei-Lun, Garoli Denis, Leong Iat Wai, Yokota Kazumichi, Daiguji Hirofumi, Kawai Tomoji
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 5267-0047, Japan.
Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
ACS Nano. 2024 Jun 11;18(23):15046-15054. doi: 10.1021/acsnano.4c01989. Epub 2024 May 28.
Nanofluidic channels in a membrane represent a promising avenue for harnessing blue energy from salinity gradients, relying on permselectivity as a pivotal characteristic crucial for inducing electricity through diffusive ion transport. Surface charge emerges as a central player in the osmotic energy conversion process, emphasizing the critical significance of a judicious selection of membrane materials to achieve optimal ion permeability and selectivity within specific channel dimensions. Alternatively, here we report a field-effect approach for in situ manipulation of the ion selectivity in a nanopore. Application of voltage to a surround-gate electrode allows precise adjustment of the surface charge density at the pore wall. Leveraging the gating control, we demonstrate permselectivity turnover to enhanced cation selective transport in multipore membranes, resulting in a 6-fold increase in the energy conversion efficiency with a power density of 15 W/m under a salinity gradient. These findings not only advance our fundamental understanding of ion transport in nanochannels but also provide a scalable and efficient strategy for nanoporous membrane osmotic power generation.
膜中的纳米流体通道是利用盐度梯度获取蓝色能源的一条有前景的途径,其依赖于选择透过性这一关键特性,该特性对于通过扩散离子传输来发电至关重要。表面电荷在渗透能转换过程中起着核心作用,这强调了明智选择膜材料以在特定通道尺寸内实现最佳离子渗透性和选择性的至关重要性。或者,在此我们报告一种用于原位操纵纳米孔中离子选择性的场效应方法。向环绕栅电极施加电压可精确调节孔壁处的表面电荷密度。利用这种门控控制,我们展示了在多孔隙膜中选择透过性转变为增强的阳离子选择性传输,在盐度梯度下能量转换效率提高了6倍,功率密度为15 W/m²。这些发现不仅推进了我们对纳米通道中离子传输的基本理解,还为纳米多孔膜渗透发电提供了一种可扩展且高效的策略。