Suppr超能文献

使用蒙特卡罗期望最大化的变量误差回归建模的通用算法。

A general algorithm for error-in-variables regression modelling using Monte Carlo expectation maximization.

机构信息

The University of New South Wales and Evolution & Ecology Research Centre, Sydney, New South Wales, Australia.

Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan.

出版信息

PLoS One. 2023 Apr 3;18(4):e0283798. doi: 10.1371/journal.pone.0283798. eCollection 2023.

Abstract

In regression modelling, measurement error models are often needed to correct for uncertainty arising from measurements of covariates/predictor variables. The literature on measurement error (or errors-in-variables) modelling is plentiful, however, general algorithms and software for maximum likelihood estimation of models with measurement error are not as readily available, in a form that they can be used by applied researchers without relatively advanced statistical expertise. In this study, we develop a novel algorithm for measurement error modelling, which could in principle take any regression model fitted by maximum likelihood, or penalised likelihood, and extend it to account for uncertainty in covariates. This is achieved by exploiting an interesting property of the Monte Carlo Expectation-Maximization (MCEM) algorithm, namely that it can be expressed as an iteratively reweighted maximisation of complete data likelihoods (formed by imputing the missing values). Thus we can take any regression model for which we have an algorithm for (penalised) likelihood estimation when covariates are error-free, nest it within our proposed iteratively reweighted MCEM algorithm, and thus account for uncertainty in covariates. The approach is demonstrated on examples involving generalized linear models, point process models, generalized additive models and capture-recapture models. Because the proposed method uses maximum (penalised) likelihood, it inherits advantageous optimality and inferential properties, as illustrated by simulation. We also study the model robustness of some violations in predictor distributional assumptions. Software is provided as the refitME package on R, whose key function behaves like a refit() function, taking a fitted regression model object and re-fitting with a pre-specified amount of measurement error.

摘要

在回归建模中,通常需要测量误差模型来校正协变量/预测变量测量的不确定性。关于测量误差(或变量误差)建模的文献很多,但是,用于最大似然估计具有测量误差的模型的通用算法和软件并不像应用研究人员那样容易获得,没有相对先进的统计专业知识就无法使用。在这项研究中,我们开发了一种新的测量误差建模算法,它原则上可以接受通过最大似然或惩罚似然拟合的任何回归模型,并扩展其以考虑协变量的不确定性。这是通过利用蒙特卡罗期望最大化(MCEM)算法的一个有趣特性来实现的,即它可以表示为通过插补缺失值来迭代重新加权完整数据似然的迭代最大化。因此,我们可以采用任何回归模型,当协变量没有误差时,我们都有一个(惩罚)似然估计的算法,将其嵌套在我们提出的迭代重新加权 MCEM 算法中,从而考虑协变量的不确定性。该方法在涉及广义线性模型、点过程模型、广义加性模型和捕获-再捕获模型的示例中进行了演示。由于所提出的方法使用最大似然(惩罚),因此它继承了有利的最优性和推论性质,如模拟所示。我们还研究了在预测器分布假设违反某些情况下的模型稳健性。软件作为 R 上的 refitME 包提供,其关键函数的行为类似于 refit()函数,接受拟合的回归模型对象,并根据预定义的测量误差量重新拟合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a73/10069785/d53ce722ea9a/pone.0283798.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验