Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States.
Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States.
ACS Synth Biol. 2023 Apr 21;12(4):1081-1093. doi: 10.1021/acssynbio.2c00587. Epub 2023 Apr 3.
In recent years, targeted protein degradation (TPD) of plasma membrane proteins by hijacking the ubiquitin proteasome system (UPS) or the lysosomal pathway has emerged as a novel therapeutic avenue in drug development to address and inhibit canonically difficult targets. While TPD strategies have been successful in targeting cell surface receptors, these approaches are limited by the availability of suitable binders to generate heterobifunctional molecules. Here, we present the development of a nanobody (VHH)-based degradation toolbox termed REULR (Receptor Elimination by E3 Ubiquitin Ligase Recruitment). We generated human and mouse cross-reactive nanobodies against five transmembrane PA-TM-RING-type E3 ubiquitin ligases (RNF128, RNF130, RNF167, RNF43, and ZNRF3), covering a broad range and selectivity of tissue expression, with which we characterized the expression in human and mouse cell lines and immune cells (PBMCs). We demonstrate that heterobifunctional REULR molecules can enforce transmembrane E3 ligase interactions with a variety of disease-relevant target receptors (EGFR, EPOR, and PD-1) by induced proximity, resulting in effective membrane clearance of the target receptor at varying levels. In addition, we designed E3 ligase self-degrading molecules, "fratricide" REULRs (RNF128, RNF130, RENF167, RNF43, and ZNRF3), that allow downregulation of one or several E3 ligases from the cell surface and consequently modulate receptor signaling strength. REULR molecules represent a VHH-based modular and versatile "mix and match" targeting strategy for the facile modulation of cell surface proteins by induced proximity to transmembrane PA-TM-RING E3 ligases.
近年来,通过劫持泛素蛋白酶体系统 (UPS) 或溶酶体途径靶向质膜蛋白的靶向蛋白降解 (TPD) 已成为药物开发中的一种新的治疗途径,以解决和抑制传统上难以靶向的靶点。虽然 TPD 策略在靶向细胞表面受体方面取得了成功,但这些方法受到可用的合适配体来产生异双功能分子的限制。在这里,我们提出了一种基于纳米抗体 (VHH) 的降解工具箱,称为 REULR(通过 E3 泛素连接酶招募受体消除)。我们针对五个跨膜 PA-TM-RING 型 E3 泛素连接酶 (RNF128、RNF130、RNF167、RNF43 和 ZNRF3) 生成了人源和鼠源交叉反应性纳米抗体,涵盖了广泛的组织表达选择性,并用其对人源和鼠源细胞系和免疫细胞(PBMCs)进行了特征描述。我们证明,异双功能 REULR 分子可以通过诱导接近,强制跨膜 E3 连接酶与各种与疾病相关的靶受体(EGFR、EPOR 和 PD-1)相互作用,从而有效清除靶受体的膜。此外,我们设计了 E3 连接酶自降解分子,“自噬”REULR(RNF128、RNF130、RENF167、RNF43 和 ZNRF3),允许从细胞表面下调一个或几个 E3 连接酶,从而调节受体信号强度。REULR 分子代表了一种基于 VHH 的模块化和多功能“混合搭配”的靶向策略,用于通过与跨膜 PA-TM-RING E3 连接酶的诱导接近来方便地调节细胞表面蛋白。