Suppr超能文献

利用声共振跟踪技术进行气体流量的动态测量。

Dynamic measurement of gas flow using acoustic resonance tracking.

机构信息

Sensor Science Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, Maryland 20899, USA.

出版信息

Rev Sci Instrum. 2023 Mar 1;94(3):034904. doi: 10.1063/5.0143819.

Abstract

The National Institute of Standards and Technology measured gas flows exiting large, unthermostated, gas-filled, pressure vessels by tracking the time-dependent pressure P(t) and resonance frequency f(t) of an acoustic mode N of the gas remaining in each vessel. This is a proof-of-principle demonstration of a gas flow standard that uses P(t), f(t), and known values of the gas's speed of sound w(p,T) to determine a mode-weighted average temperature ⟨T⟩ of the gas remaining in a pressure vessel while the vessel acts as a calibrated source of gas flow. To track f(t) while flow work rapidly changed the gas's temperature, we sustained the gas's oscillations using positive feedback. Feedback oscillations tracked ⟨T⟩ with a response time of order 1/f. In contrast, driving the gas's oscillations with an external frequency generator yielded much slower response times of order Q/f. (For our pressure vessels, Q ∼ 10-10, where Q is the ratio of the energy stored to the energy lost in one cycle of oscillation.) We tracked f(t) of radial modes in a spherical vessel (1.85 m) and of longitudinal modes of a cylindrical vessel (0.3 m) during gas flows ranging from 0.24 to 12.4 g/s to determine the mass flows with an uncertainty of 0.51 % (95 % confidence level). We discuss the challenges in tracking f(t) and ways to reduce the uncertainties.

摘要

美国国家标准与技术研究院(NIST)通过跟踪剩余气体的声模态 N 的压力 P(t) 和共振频率 f(t),测量了大型无恒温、充满气体、压力容器中的气体流量。这是一种使用 P(t)、f(t)和已知气体声速 w(p,T)的气体流量标准的原理验证演示,用于确定压力容器中剩余气体的模式加权平均温度 ⟨T⟩,同时压力容器充当经过校准的气流源。为了在流动功快速改变气体温度时跟踪 f(t),我们使用正反馈来维持气体的振荡。反馈振荡以约 1/f 的响应时间跟踪 ⟨T⟩。相比之下,使用外部频率发生器驱动气体的振荡会产生响应时间慢得多的约 Q/f。(对于我们的压力容器,Q ∼ 10-10,其中 Q 是存储的能量与一个振荡周期中损失的能量之比。)我们在气体流量从 0.24 到 12.4 g/s 范围内跟踪了球形容器(1.85 m)中的径向模式和圆柱形容器(0.3 m)中的纵向模式的 f(t),以确定质量流量,不确定度为 0.51 %(95 %置信水平)。我们讨论了跟踪 f(t)的挑战和降低不确定性的方法。

相似文献

7
Design and Uncertainty Analysis for a PVTt Gas Flow Standard.PVTt气体流量标准装置的设计与不确定度分析
J Res Natl Inst Stand Technol. 2003 Feb 1;108(1):21-47. doi: 10.6028/jres.108.004. Print 2003 Jan-Feb.
9
Predicting enhanced mass flow rates in gas microchannels using nonkinetic models.使用非动力学模型预测气体微通道中增强的质量流率。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036318. doi: 10.1103/PhysRevE.86.036318. Epub 2012 Sep 21.

本文引用的文献

1
Spatially resolved fibre cavity ring down spectroscopy.空间分辨光纤腔衰荡光谱学
Sci Rep. 2020 Nov 19;10(1):20167. doi: 10.1038/s41598-020-76721-y.
10
Coupled-cavity ring-down spectroscopy technique.耦合腔衰荡光谱技术。
Opt Lett. 2012 Aug 15;37(16):3354-6. doi: 10.1364/OL.37.003354.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验