Suppr超能文献

将农场数据与基因组信息整合,可提高牛奶近红外预测奶牛代谢紊乱血液指标的预测能力。

Integrating on-farm and genomic information improves the predictive ability of milk infrared prediction of blood indicators of metabolic disorders in dairy cows.

机构信息

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, PD, Italy.

Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food, and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.

出版信息

Genet Sel Evol. 2023 Apr 3;55(1):23. doi: 10.1186/s12711-023-00795-1.

Abstract

BACKGROUND

Blood metabolic profiles can be used to assess metabolic disorders and to evaluate the health status of dairy cows. Given that these analyses are time-consuming, expensive, and stressful for the cows, there has been increased interest in Fourier transform infrared (FTIR) spectroscopy of milk samples as a rapid, cost-effective alternative for predicting metabolic disturbances. The integration of FTIR data with other layers of information such as genomic and on-farm data (days in milk (DIM) and parity) has been proposed to further enhance the predictive ability of statistical methods. Here, we developed a phenotype prediction approach for a panel of blood metabolites based on a combination of milk FTIR data, on-farm data, and genomic information recorded on 1150 Holstein cows, using BayesB and gradient boosting machine (GBM) models, with tenfold, batch-out and herd-out cross-validation (CV) scenarios.

RESULTS

The predictive ability of these approaches was measured by the coefficient of determination (R). The results show that, compared to the model that includes only FTIR data, integration of both on-farm (DIM and parity) and genomic information with FTIR data improves the R for blood metabolites across the three CV scenarios, especially with the herd-out CV: R values ranged from 5.9 to 17.8% for BayesB, from 8.2 to 16.9% for GBM with the tenfold random CV, from 3.8 to 13.5% for BayesB and from 8.6 to 17.5% for GBM with the batch-out CV, and from 8.4 to 23.0% for BayesB and from 8.1 to 23.8% for GBM with the herd-out CV. Overall, with the model that includes the three sources of data, GBM was more accurate than BayesB with accuracies across the CV scenarios increasing by 7.1% for energy-related metabolites, 10.7% for liver function/hepatic damage, 9.6% for oxidative stress, 6.1% for inflammation/innate immunity, and 11.4% for mineral indicators.

CONCLUSIONS

Our results show that, compared to using only milk FTIR data, a model integrating milk FTIR spectra with on-farm and genomic information improves the prediction of blood metabolic traits in Holstein cattle and that GBM is more accurate in predicting blood metabolites than BayesB, especially for the batch-out CV and herd-out CV scenarios.

摘要

背景

血液代谢谱可用于评估代谢紊乱和奶牛的健康状况。鉴于这些分析既耗时又昂贵,对奶牛也有压力,因此人们越来越关注牛奶样本的傅里叶变换红外(FTIR)光谱作为一种快速、经济有效的替代方法来预测代谢紊乱。将 FTIR 数据与基因组和农场数据(产奶天数(DIM)和胎次)等其他层信息结合使用,已被提议进一步提高统计方法的预测能力。在这里,我们使用贝叶斯 B(BayesB)和梯度提升机(GBM)模型,结合 1150 头荷斯坦奶牛的牛奶 FTIR 数据、农场数据和基因组信息,开发了一种基于血液代谢物的表型预测方法,采用十折、批出和群出交叉验证(CV)方案。

结果

通过决定系数(R)来衡量这些方法的预测能力。结果表明,与仅包含 FTIR 数据的模型相比,将农场(DIM 和胎次)和基因组信息与 FTIR 数据集成,可以提高三个 CV 场景中血液代谢物的 R,特别是在群出 CV 中:贝叶斯 B 的 R 值范围为 5.9%至 17.8%,GBM 的 R 值范围为 8.2%至 16.9%,十折随机 CV;贝叶斯 B 的 R 值范围为 3.8%至 13.5%,GBM 的 R 值范围为 8.6%至 17.5%,批出 CV;贝叶斯 B 的 R 值范围为 8.4%至 23.0%,GBM 的 R 值范围为 8.1%至 23.8%,群出 CV。总的来说,在包含三种数据源的模型中,GBM 比 BayesB 更准确,CV 场景中的准确率提高了 7.1%,与能量相关的代谢物;10.7%,与肝功能/肝损伤相关;9.6%,与氧化应激相关;6.1%,与炎症/先天免疫相关;11.4%,与矿物质指标相关。

结论

我们的结果表明,与仅使用牛奶 FTIR 数据相比,将牛奶 FTIR 光谱与农场和基因组信息相结合的模型可以提高荷斯坦奶牛血液代谢特征的预测能力,并且 GBM 在预测血液代谢物方面比 BayesB 更准确,尤其是在批出 CV 和群出 CV 场景中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3def/10069109/ab4a1a34cfe6/12711_2023_795_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验