Suppr超能文献

AGAT-PPIS:一种基于增强图注意网络的新型蛋白质-蛋白质相互作用位点预测器,具有初始残差和身份映射。

AGAT-PPIS: a novel protein-protein interaction site predictor based on augmented graph attention network with initial residual and identity mapping.

机构信息

School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China.

Engineering Research Center of Sustainable Urban Intelligent Transportation, Ministry of Education, China.

出版信息

Brief Bioinform. 2023 May 19;24(3). doi: 10.1093/bib/bbad122.

Abstract

Identifying protein-protein interaction (PPI) site is an important step in understanding biological activity, apprehending pathological mechanism and designing novel drugs. Developing reliable computational methods for predicting PPI site as screening tools contributes to reduce lots of time and expensive costs for conventional experiments, but how to improve the accuracy is still challenging. We propose a PPI site predictor, called Augmented Graph Attention Network Protein-Protein Interacting Site (AGAT-PPIS), based on AGAT with initial residual and identity mapping, in which eight AGAT layers are connected to mine node embedding representation deeply. AGAT is our augmented version of graph attention network, with added edge features. Besides, extra node features and edge features are introduced to provide more structural information and increase the translation and rotation invariance of the model. On the benchmark test set, AGAT-PPIS significantly surpasses the state-of-the-art method by 8% in Accuracy, 17.1% in Precision, 11.8% in F1-score, 15.1% in Matthews Correlation Coefficient (MCC), 8.1% in Area Under the Receiver Operating Characteristic curve (AUROC), 14.5% in Area Under the Precision-Recall curve (AUPRC), respectively.

摘要

鉴定蛋白质-蛋白质相互作用(PPI)位点是理解生物活性、理解病理机制和设计新型药物的重要步骤。开发可靠的计算方法来预测 PPI 位点作为筛选工具有助于减少传统实验的大量时间和昂贵成本,但如何提高准确性仍然具有挑战性。我们提出了一种称为基于增强图注意力网络的蛋白质-蛋白质相互作用位点预测器(AGAT-PPIS)的 PPI 位点预测器,该预测器基于具有初始残差和身份映射的 AGAT,其中八个 AGAT 层连接在一起,以深入挖掘节点嵌入表示。AGAT 是我们对图注意网络的增强版本,增加了边特征。此外,还引入了额外的节点特征和边特征,以提供更多的结构信息,并提高模型的平移和旋转不变性。在基准测试集中,AGAT-PPIS 在准确性方面比最先进的方法显著提高了 8%,在精度方面提高了 17.1%,在 F1 得分方面提高了 11.8%,在马修斯相关系数(MCC)方面提高了 15.1%,在接收器操作特征曲线下的面积(AUROC)方面提高了 8.1%,在精度-召回曲线下的面积(AUPRC)方面提高了 14.5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验