Suppr超能文献

GAPS:基于转移学习的肽结合位点识别的几何注意力网络。

GAPS: a geometric attention-based network for peptide binding site identification by the transfer learning approach.

机构信息

College of Pharmaceutical Sciences, Zhejiang University of Technology, Chaowang Road, Gongshu District, Hangzhou 310014, China.

AI Department, Shanghai Highslab Therapeutics. Inc, Zhangheng Road, Pudong New Area, Shanghai 201203, China.

出版信息

Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae297.

Abstract

Protein-peptide interactions (PPepIs) are vital to understanding cellular functions, which can facilitate the design of novel drugs. As an essential component in forming a PPepI, protein-peptide binding sites are the basis for understanding the mechanisms involved in PPepIs. Therefore, accurately identifying protein-peptide binding sites becomes a critical task. The traditional experimental methods for researching these binding sites are labor-intensive and time-consuming, and some computational tools have been invented to supplement it. However, these computational tools have limitations in generality or accuracy due to the need for ligand information, complex feature construction, or their reliance on modeling based on amino acid residues. To deal with the drawbacks of these computational algorithms, we describe a geometric attention-based network for peptide binding site identification (GAPS) in this work. The proposed model utilizes geometric feature engineering to construct atom representations and incorporates multiple attention mechanisms to update relevant biological features. In addition, the transfer learning strategy is implemented for leveraging the protein-protein binding sites information to enhance the protein-peptide binding sites recognition capability, taking into account the common structure and biological bias between proteins and peptides. Consequently, GAPS demonstrates the state-of-the-art performance and excellent robustness in this task. Moreover, our model exhibits exceptional performance across several extended experiments including predicting the apo protein-peptide, protein-cyclic peptide and the AlphaFold-predicted protein-peptide binding sites. These results confirm that the GAPS model is a powerful, versatile, stable method suitable for diverse binding site predictions.

摘要

蛋白质-肽相互作用(PPepIs)对于理解细胞功能至关重要,这有助于设计新型药物。作为形成 PPepI 的重要组成部分,蛋白质-肽结合位点是理解 PPepIs 中涉及的机制的基础。因此,准确识别蛋白质-肽结合位点成为一项关键任务。传统的实验方法在研究这些结合位点时既费时又费力,并且已经发明了一些计算工具来对此进行补充。然而,由于需要配体信息、复杂特征构建或依赖基于氨基酸残基的建模,这些计算工具在通用性或准确性方面存在局限性。为了解决这些计算算法的缺点,我们在这项工作中描述了一种用于肽结合位点识别的基于几何注意力的网络(GAPS)。所提出的模型利用几何特征工程来构建原子表示,并结合多个注意力机制来更新相关的生物学特征。此外,还实施了迁移学习策略,利用蛋白质-蛋白质结合位点信息来增强蛋白质-肽结合位点识别能力,同时考虑到蛋白质和肽之间的共同结构和生物学偏向性。因此,GAPS 在这项任务中表现出了最先进的性能和出色的稳健性。此外,我们的模型在包括预测无配体蛋白-肽、蛋白-环肽和 AlphaFold 预测的蛋白-肽结合位点在内的几个扩展实验中表现出了卓越的性能。这些结果证实,GAPS 模型是一种强大、通用、稳定的方法,适用于各种结合位点预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bdd/11238429/a0f0740f157a/bbae297f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验