Suppr超能文献

基于多模态深度表示学习的蛋白质相互作用识别和蛋白质家族分类。

Multimodal deep representation learning for protein interaction identification and protein family classification.

机构信息

Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, U.S..

Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, U.S.

出版信息

BMC Bioinformatics. 2019 Dec 2;20(Suppl 16):531. doi: 10.1186/s12859-019-3084-y.

Abstract

BACKGROUND

Protein-protein interactions(PPIs) engage in dynamic pathological and biological procedures constantly in our life. Thus, it is crucial to comprehend the PPIs thoroughly such that we are able to illuminate the disease occurrence, achieve the optimal drug-target therapeutic effect and describe the protein complex structures. However, compared to the protein sequences obtainable from various species and organisms, the number of revealed protein-protein interactions is relatively limited. To address this dilemma, lots of research endeavor have investigated in it to facilitate the discovery of novel PPIs. Among these methods, PPI prediction techniques that merely rely on protein sequence data are more widespread than other methods which require extensive biological domain knowledge.

RESULTS

In this paper, we propose a multi-modal deep representation learning structure by incorporating protein physicochemical features with the graph topological features from the PPI networks. Specifically, our method not only bears in mind the protein sequence information but also discerns the topological representations for each protein node in the PPI networks. In our paper, we construct a stacked auto-encoder architecture together with a continuous bag-of-words (CBOW) model based on generated metapaths to study the PPI predictions. Following by that, we utilize the supervised deep neural networks to identify the PPIs and classify the protein families. The PPI prediction accuracy for eight species ranged from 96.76% to 99.77%, which signifies that our multi-modal deep representation learning framework achieves superior performance compared to other computational methods.

CONCLUSION

To the best of our knowledge, this is the first multi-modal deep representation learning framework for examining the PPI networks.

摘要

背景

蛋白质-蛋白质相互作用(PPIs)在我们的生活中不断参与动态的病理和生物学过程。因此,深入了解 PPIs 至关重要,这样我们才能阐明疾病的发生,实现最佳的药物靶点治疗效果,并描述蛋白质复合物的结构。然而,与从各种物种和生物体获得的蛋白质序列相比,揭示的蛋白质-蛋白质相互作用的数量相对有限。为了解决这个难题,许多研究都致力于促进新的 PPIs 的发现。在这些方法中,仅依赖蛋白质序列数据的 PPI 预测技术比其他需要广泛生物学领域知识的方法更为广泛。

结果

在本文中,我们提出了一种多模态深度表示学习结构,将蛋白质理化特性与 PPI 网络的图拓扑特征相结合。具体来说,我们的方法不仅考虑了蛋白质序列信息,还辨别了 PPI 网络中每个蛋白质节点的拓扑表示。在本文中,我们构建了一个堆叠自动编码器架构和一个基于生成元路径的连续袋字(CBOW)模型,以研究 PPI 预测。之后,我们利用有监督的深度神经网络来识别 PPIs 和分类蛋白质家族。八种物种的 PPI 预测准确率从 96.76%到 99.77%不等,这表明我们的多模态深度表示学习框架比其他计算方法具有更优异的性能。

结论

据我们所知,这是第一个用于研究 PPI 网络的多模态深度表示学习框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e76/6886253/662285f2b63b/12859_2019_3084_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验