Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA.
Chilean Mining and Metallurgy Research Center, Centro de Investigación Minera y Metalúrgica, Santiago, Chile.
Environ Toxicol Chem. 2023 Jun;42(6):1371-1385. doi: 10.1002/etc.5627. Epub 2023 May 8.
A series of chronic toxicity tests was conducted exposing three aquatic species to iron (Fe) in laboratory freshwaters. The test organisms included the green algae Raphidocelis subcapitata, the cladoceran Ceriodaphnia dubia, and the fathead minnow Pimephales promelas. They were exposed to Fe (as Fe (III) sulfate) in waters under varying pH (5.9-8.5), hardness (10.3-255 mg/L CaCO ), and dissolved organic carbon (DOC; 0.3-10.9 mg/L) conditions. Measured total Fe was used for calculations of biological effect concentrations because dissolved Fe was only a fraction of nominal and did not consistently increase as total Fe increased. This was indicative of the high concentrations of Fe required to elicit a biological response and that Fe species that did not pass through a 0.20- or 0.45-µm filter (dissolved fraction) contributed to Fe toxicity. The concentrations frequently exceeded the solubility limits of Fe(III) under circumneutral pH conditions relevant to most natural surface waters. Chronic toxicity endpoints (10% effect concentrations [EC10s]) ranged from 442 to 9607 µg total Fe/L for R. subcapitata growth, from 383 to 15 947 µg total Fe/L for C. dubia reproduction, and from 192 to 58,308 µg total Fe/L for P. promelas growth. Toxicity to R. subcapitata was variably influenced by all three water quality parameters, but especially DOC. Toxicity to C. dubia was influenced by DOC, less so by hardness, but not by pH. Toxicity to P. promelas was variable, but greatest under low hardness, low pH, and low DOC conditions. These data were used to develop an Fe-specific, bioavailability-based multiple linear regression model as part of a companion publication. Environ Toxicol Chem 2023;42:1371-1385. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
进行了一系列慢性毒性试验,将三种水生生物暴露于实验室淡水的铁(Fe)中。试验生物包括绿藻莱茵衣藻、溞状蚤和胖头鱼。它们暴露于不同 pH(5.9-8.5)、硬度(10.3-255 mg/L CaCO3)和溶解有机碳(DOC;0.3-10.9 mg/L)条件下的 Fe(以 Fe(III)硫酸盐形式)。由于溶解的 Fe 仅为名义值的一小部分,并且随着总 Fe 的增加并不一致增加,因此使用测量的总 Fe 来计算生物效应浓度。这表明需要高浓度的 Fe 才能引起生物反应,并且未通过 0.20 或 0.45 µm 过滤器(溶解部分)的 Fe 物种对 Fe 毒性有贡献。在与大多数天然地表水相关的中性 pH 条件下,铁的浓度经常超过 Fe(III)的溶解度极限。慢性毒性终点(10%效应浓度 [EC10])范围为莱茵衣藻生长的 442 至 9607 µg 总 Fe/L,溞状蚤繁殖的 383 至 15947 µg 总 Fe/L,以及胖头鱼生长的 192 至 58308 µg 总 Fe/L。莱茵衣藻的毒性受到所有三个水质参数的不同影响,但特别是 DOC。溞状蚤的毒性受 DOC 影响,受硬度影响较小,但不受 pH 影响。胖头鱼的毒性变化不定,但在低硬度、低 pH 和低 DOC 条件下最大。这些数据被用于开发一种基于铁特异性和生物利用度的多元线性回归模型,作为配套出版物的一部分。环境毒理化学 2023;42:1371-1385。版权所有 2023 年作者。环境毒理化学由 Wiley Periodicals LLC 代表 SETAC 出版。