Suppr超能文献

一种单搏算法,用于区分肺静脉的远场和近场双极电压电图。

A single-beat algorithm to discriminate farfield from nearfield bipolar voltage electrograms from the pulmonary veins.

机构信息

Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland.

Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland.

出版信息

J Interv Card Electrophysiol. 2023 Dec;66(9):2047-2054. doi: 10.1007/s10840-023-01535-7. Epub 2023 Apr 4.

Abstract

BACKGROUND

Superimposition of farfield (FF) and nearfield (NF) bipolar voltage electrograms (BVE) complicates the confirmation of pulmonary vein (PV) isolation after catheter ablation of atrial fibrillation. Our aim was to develop an automatic algorithm based on a single-beat analysis to discriminate PV NF from atrial FF BVE from a circular mapping catheter during the cryoballoon PV isolation.

METHODS

During freezing cycles in cryoablation PVI, local NF and distant FF signals were recorded, identified and labelled. BVEs were classified using four different machine learning algorithms based on four frequency domain (high-frequency power (P), low-frequency power (P), relative high power band, P ratio of neighbouring electrodes) and two time domain features (amplitude (V), slew rate). The algorithm-based classification was compared to the true identification gained during the PVI and to a classification by cardiac electrophysiologists.

RESULTS

We included 335 BVEs from 57 consecutive patients. Using a single feature, P with a cut-off at 150 Hz showed the best overall accuracy for classification (79.4%). By combining P with V, overall accuracy was improved to 82.7% with a specificity of 89% and a sensitivity of 77%. The overall accuracy was highest for the right inferior PV (96.6%) and lowest for the left superior PV (76.9%). The algorithm showed comparable accuracy to the classification by the EP specialists.

CONCLUSIONS

An automated farfield-nearfield discrimination based on two simple features from a single-beat BVE is feasible with a high specificity and comparable accuracy to the assessment by experienced cardiac electrophysiologists.

摘要

背景

远场(FF)和近场(NF)双极电压电图(BVE)的叠加使得在房颤导管消融后确认肺静脉(PV)隔离变得复杂。我们的目的是开发一种基于单拍分析的自动算法,以区分冷冻球囊 PV 隔离过程中环形标测导管中的 PV NF 和心房 FF BVE。

方法

在冷冻消融 PVI 期间,记录、识别和标记局部 NF 和远距离 FF 信号。使用基于四个频域(高频功率(P)、低频功率(P)、相对高功率带、相邻电极的 P 比)和两个时域特征(幅度(V)、斜率)的四种不同机器学习算法对 BVEs 进行分类。基于算法的分类与在 PVI 期间获得的真实识别以及由心脏电生理学家进行的分类进行比较。

结果

我们纳入了 57 例连续患者的 335 个 BVEs。使用单一特征,截止值为 150 Hz 的 P 显示出最佳的总体分类准确性(79.4%)。通过将 P 与 V 结合,整体准确性提高到 82.7%,特异性为 89%,敏感性为 77%。右下肺静脉(96.6%)的整体准确性最高,左上肺静脉(76.9%)最低。该算法的准确性与经验丰富的心脏电生理学家的分类相当。

结论

基于单拍 BVE 中的两个简单特征的自动远场-近场区分具有很高的特异性,与经验丰富的心脏电生理学家的评估准确性相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f44/10694100/1233c32dc06e/10840_2023_1535_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验