Department of Pharmacology, Keio University School of Medicine, 160-8582 Tokyo, Japan.
Department of Pediatrics, Juntendo University Urayasu Hospital, 279-0021 Chiba, Japan.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2300817120. doi: 10.1073/pnas.2300817120. Epub 2023 Apr 4.
Mammals exhibit systemic homochirality of amino acids in L-configurations. While ribosomal protein synthesis requires rigorous chiral selection for L-amino acids, both endogenous and microbial enzymes convert diverse L-amino acids to D-configurations in mammals. However, it is not clear how mammals manage such diverse D-enantiomers. Here, we show that mammals sustain systemic stereo dominance of L-amino acids through both enzymatic degradation and excretion of D-amino acids. Multidimensional high performance liquidchromatography analyses revealed that in blood, humans and mice maintain D-amino acids at less than several percent of the corresponding L-enantiomers, while D-amino acids comprise ten to fifty percent of the L-enantiomers in urine and feces. Germ-free experiments showed that vast majority of D-amino acids, except for D-serine, detected in mice are of microbial origin. Experiments involving mice that lack enzymatic activity to catabolize D-amino acids showed that catabolism is central to the elimination of diverse microbial D-amino acids, whereas excretion into urine is of minor importance under physiological conditions. Such active regulation of amino acid homochirality depends on maternal catabolism during the prenatal period, which switches developmentally to juvenile catabolism along with the growth of symbiotic microbes after birth. Thus, microbial symbiosis largely disturbs homochirality of amino acids in mice, whereas active host catabolism of microbial D-amino acids maintains systemic predominance of L-amino acids. Our findings provide fundamental insight into how the chiral balance of amino acids is governed in mammals and further expand the understanding of interdomain molecular homeostasis in host-microbial symbiosis.
哺乳动物表现出系统的手性氨基酸 L-构型。虽然核糖体蛋白合成需要严格的手性选择 L-氨基酸,但内源性和微生物酶都能将多种 L-氨基酸转化为哺乳动物中的 D-构型。然而,目前尚不清楚哺乳动物如何处理如此多样的 D-对映体。在这里,我们表明哺乳动物通过酶促降解和排泄 D-氨基酸来维持系统的立体优势 L-氨基酸。多维高效液相色谱分析表明,在血液中,人类和小鼠将 D-氨基酸维持在相应 L-对映体的百分之几以下,而 D-氨基酸在尿液和粪便中占 L-对映体的百分之十到五十。无菌实验表明,除 D-丝氨酸外,在小鼠中检测到的绝大多数 D-氨基酸都来自微生物。涉及缺乏代谢 D-氨基酸的酶活性的小鼠的实验表明,代谢是消除各种微生物 D-氨基酸的核心,而在生理条件下,排泄到尿液中的作用则较小。这种对氨基酸手性的主动调节取决于母体在产前期间的代谢,这种代谢会随着出生后共生微生物的生长而在发育过程中转变为幼年期代谢。因此,微生物共生在很大程度上扰乱了小鼠氨基酸的手性,而宿主对微生物 D-氨基酸的主动代谢则维持了系统中 L-氨基酸的优势。我们的发现为哺乳动物中氨基酸手性平衡的调控提供了基本的见解,并进一步扩展了对宿主-微生物共生中域间分子动态平衡的理解。